版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit4:TrigonometricFunctions
Lesson1:TheGraphsofsin,cosandtanUnit4:TrigonometricFunctionTrigonometryIngrade10youwereintroducedtotrigonometrybyapplyingittorighttrianglesIngrade11youusedtrigonometrytosolveobliquetriangles(triangleswithoutarightangle)Thisrequiredyoutousesin,cosandtanforanglesgreaterthan90˚Next,youcreatedgraphsofsinandcosKnownastrigonometricfunctionsIngrade12,wewillcreategraphsofsin,cosandtanforanglesbetween0and2πWenowlookatthetrigonometricfunctionsinradiansTrigonometryIngrade10youwGraphsofsinandcosThegraphsoff(x)=sinxandf(x)=cosxwhenxisindegreesare:Orifweextendthembeyond0and360:GraphsofsinandcosThegraphTerminologyThefunctionsf(x)=sinxandf(x)=cosxareperiodicTheyhavearepeatingpatternTheperiodisthehorizontallengthoftherepeatingpatternTheaxisofcurveisequationofthehorizontallinethatcutsthegraphinhalfTheamplitudeisverticaldistancefromtheaxisofcurvetothemaximum(orminimum)pointBecauseitisadistance,theamplitudeisalwayspositiveTerminologyThefunctionsf(x)PropertiesoftheGraphofsinOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360˚Theliney=01-11PropertiesoftheGraphofsinPropertiesoftheGraphofcosOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360˚Theliney=01-11PropertiesoftheGraphofcosExample1UseyourTI-83or“Graph”tocreateagraphoff(x)=sinxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample1UseyourTI-83or“GrExample1:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example1:SolutionOneperiodAExample1:NotesThegraphoff(x)=sinxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360˚forxindegrees2πforxinradiansThismakessensebecausetheonlythingthatchangedwastheunitsforxandtheperioddependsonx360˚Example1:NotesThegraphoffExample2UseyourTI-83or“Graph”tocreateagraphoff(x)=cosxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample2UseyourTI-83or“GrExample2:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example2:SolutionOneperiodAExample2:NotesThegraphoff(x)=cosxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360˚forxindegrees2πforxinradiansThisisexactlywhatwesawforf(x)=sinx360˚Example2:NotesThegraphoffExample3UseyourTI-83or“Graph”tocreateagraphoff(x)=tanxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample3UseyourTI-83or“GrExample3:SolutionOneperiodAxisofcurvePeriod:Axisofcurve:Maximum:Minimum:Amplitude:πTheliney=0nonenonenoneThegraphoftanhasverticalasymptotes!Example3:SolutionOneperiodAExample3:NotesAlthoughitisperiodic(period=π),thegraphoff(x)=tanxlooksnothinglikef(x)=sinxorf(x)=cosxf(x)=tanxhasnoamplitudebecauseithasnomaximumorminimumvaluesf(x)=tanxhasasymptotesatoddmultiplesofi.e.Example3:NotesAlthoughitisWhyf(x)=tanxHasAsymptotesUsingthequotientidentity,wecanseethatf(x)=tanxisarationalfunction:So,f(x)=tanxwillhaveasymptoteswherevercosx=0Becausecosx=0when f(x)=tanxhasasymptoteswhenWhyf(x)=tanxHasAsymptoteExample4(a)Onthesameaxis,graph f(x)=sin(x) f(x)=sin(x)+2 f(x)=sin(x)–3Makesurexisinradians(b)DescribewhatishappeningExample4(a)Onthesameaxis,Example4:SolutionThegraphoff(x)=sinxismovingupanddownExample4:SolutionThegraphoExample4:NotesByaddingavaluec,tof(x)=sinx,wemovethefunction…Upwhenc>0Downwhenc<0ThisisknownasaverticaltranslationThevalueofcisaddedtothey-coordinateofeverypointonthegraphoff(x)=sinx
Changestheaxisofcurvetotheliney=cExample4:NotesByaddingavaExample5(a)Onthesameaxis,graph f(x)=sin(x) f(x)=2sin(x) f(x)=0.5sin(x) f(x)=-3sin(x)Makesurexisinradians(b)DescribewhatishappeningExample5(a)Onthesameaxis,Example5:SolutionThegraphoff(x)=sinxisbeingstretchedandcompressed.Thegraphoff(x)=sinxis“flipped”overthex-axisandstretchedExample5:SolutionThegraphoExample5:NotesBymultiplyingf(x)=sinxbyavalueawe…Stretchthefunctionwhena>1Compressthefunctionwhen0<a<1ThisisknownasaverticaldilationWealsoreflectthefunctionoverthex-axiswhena<0ThisisknownasaverticalreflectionInbothcases,They-coordinateofeverypointonthegraphoff(x)=sinx
ismultipliedbyaTheamplitudeischangedto|a|Means“absolutevalue”andyouignorethenegativeExample5:NotesBymultiplyingExample6(a)Onthesameaxis,graph
Makesurexisinradians(b)DescribewhatishappeningExample6(a)Onthesameaxis,Example6:SolutionThegraphoff(x)=sinxismovingrightandleftExample6:SolutionThegraphoExample6:NotesBysubtractingavaluedintheargumentoff(x)=sinx,wemovethefunction…Leftwhend<0Rightwhend>0ThisisknownasahorizontaltranslationThevalueofdisaddedtothex-coordinateofeverypointonthegraphoff(x)=sinx
Dealingwithhorizontaltranslationsiscounter-intuitiveWhend<0thefunctionlookslike:f(x)=sin(x+d)andwemoveitleftWhend>0thefunctionlookslike:f(x)=sin(x–d)andwemoveitrightCommonlyreferredtoasaphaseshiftExample6:NotesBysubtractingExample7(a)Onthesameaxis,graph
Makesurexisinradians(b)DescribewhatishappeningExample7(a)Onthesameaxis,Example7:SolutionThegraphoff(x)=sinxisbeingstretchedorcompressedhorizontallyExample7:SolutionThegraphoExample7:NotesBymultiplyingtheargumentoff(x)=sinxbyavaluekwe…Compressthefunctionhorizontallywhenk>1Stretchthefunctionhorizontallywhen0<k<1ThisisknownasahorizontaldilationThex-coordinateofeverypointonthegraphoff(x)=sinx
ismultipliedby1/kTheperiodischangedfrom2πto:i.e.ifk=2,thetransformedfunctionwillhavetwoperiodsin2πExample7:NotesBymultiplyingSummary,Part1Thegraphsofsin,cosandtanhavethefollowingproperties:f(x)=sinxf(x)=cosxf(x)=tanxPeriod2π2ππMaxValue11N/AMinValue-1-1N/AAmplitude11N/AAxisofcurveY=0Y=0Y=0Asymptotesn/an/aGraphSummary,Part1ThegraphsofsSummary,Part2Wecantransformthegraphsoff(x)=sinxandf(x)=cosxinthefollowingways:Verticaltranslationf(x)=sin(x)+corf(x)=cos(x)+cMovetheaxisofcurvetoy=cHorizontaltranslationf(x)=sin(x–d)orf(x)=cos(x–d)AphaseshiftofdVerticalDilationf(x)=asin(x)orf(x)=acos(x)Changeamplitudeto|a|(nonegatives!)HorizontalDilationf(x)=sin(kx)orf(x)=cos(kx)ChangetheperiodtoSummary,Part2WecantransforPracticeProblemsP.258-260#1-11,15,19(notf)Note:Anygraphs/sketchescanbedoneusingyourTI-83ortheprogram“Graph”PracticeProblemsP.258-260#1Unit4:TrigonometricFunctions
Lesson1:TheGraphsofsin,cosandtanUnit4:TrigonometricFunctionTrigonometryIngrade10youwereintroducedtotrigonometrybyapplyingittorighttrianglesIngrade11youusedtrigonometrytosolveobliquetriangles(triangleswithoutarightangle)Thisrequiredyoutousesin,cosandtanforanglesgreaterthan90˚Next,youcreatedgraphsofsinandcosKnownastrigonometricfunctionsIngrade12,wewillcreategraphsofsin,cosandtanforanglesbetween0and2πWenowlookatthetrigonometricfunctionsinradiansTrigonometryIngrade10youwGraphsofsinandcosThegraphsoff(x)=sinxandf(x)=cosxwhenxisindegreesare:Orifweextendthembeyond0and360:GraphsofsinandcosThegraphTerminologyThefunctionsf(x)=sinxandf(x)=cosxareperiodicTheyhavearepeatingpatternTheperiodisthehorizontallengthoftherepeatingpatternTheaxisofcurveisequationofthehorizontallinethatcutsthegraphinhalfTheamplitudeisverticaldistancefromtheaxisofcurvetothemaximum(orminimum)pointBecauseitisadistance,theamplitudeisalwayspositiveTerminologyThefunctionsf(x)PropertiesoftheGraphofsinOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360˚Theliney=01-11PropertiesoftheGraphofsinPropertiesoftheGraphofcosOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360˚Theliney=01-11PropertiesoftheGraphofcosExample1UseyourTI-83or“Graph”tocreateagraphoff(x)=sinxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample1UseyourTI-83or“GrExample1:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example1:SolutionOneperiodAExample1:NotesThegraphoff(x)=sinxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360˚forxindegrees2πforxinradiansThismakessensebecausetheonlythingthatchangedwastheunitsforxandtheperioddependsonx360˚Example1:NotesThegraphoffExample2UseyourTI-83or“Graph”tocreateagraphoff(x)=cosxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample2UseyourTI-83or“GrExample2:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example2:SolutionOneperiodAExample2:NotesThegraphoff(x)=cosxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360˚forxindegrees2πforxinradiansThisisexactlywhatwesawforf(x)=sinx360˚Example2:NotesThegraphoffExample3UseyourTI-83or“Graph”tocreateagraphoff(x)=tanxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample3UseyourTI-83or“GrExample3:SolutionOneperiodAxisofcurvePeriod:Axisofcurve:Maximum:Minimum:Amplitude:πTheliney=0nonenonenoneThegraphoftanhasverticalasymptotes!Example3:SolutionOneperiodAExample3:NotesAlthoughitisperiodic(period=π),thegraphoff(x)=tanxlooksnothinglikef(x)=sinxorf(x)=cosxf(x)=tanxhasnoamplitudebecauseithasnomaximumorminimumvaluesf(x)=tanxhasasymptotesatoddmultiplesofi.e.Example3:NotesAlthoughitisWhyf(x)=tanxHasAsymptotesUsingthequotientidentity,wecanseethatf(x)=tanxisarationalfunction:So,f(x)=tanxwillhaveasymptoteswherevercosx=0Becausecosx=0when f(x)=tanxhasasymptoteswhenWhyf(x)=tanxHasAsymptoteExample4(a)Onthesameaxis,graph f(x)=sin(x) f(x)=sin(x)+2 f(x)=sin(x)–3Makesurexisinradians(b)DescribewhatishappeningExample4(a)Onthesameaxis,Example4:SolutionThegraphoff(x)=sinxismovingupanddownExample4:SolutionThegraphoExample4:NotesByaddingavaluec,tof(x)=sinx,wemovethefunction…Upwhenc>0Downwhenc<0ThisisknownasaverticaltranslationThevalueofcisaddedtothey-coordinateofeverypointonthegraphoff(x)=sinx
Changestheaxisofcurvetotheliney=cExample4:NotesByaddingavaExample5(a)Onthesameaxis,graph f(x)=sin(x) f(x)=2sin(x) f(x)=0.5sin(x) f(x)=-3sin(x)Makesurexisinradians(b)DescribewhatishappeningExample5(a)Onthesameaxis,Example5:SolutionThegraphoff(x)=sinxisbeingstretchedandcompressed.Thegraphoff(x)=sinxis“flipped”overthex-axisandstretchedExample5:SolutionThegraphoExample5:NotesBymultiplyingf(x)=sinxbyavalueawe…Stretchthefunctionwhena>1Compressthefunctionwhen0<a<1ThisisknownasaverticaldilationWealsoreflectthefunctionoverthex-axiswhena<0ThisisknownasaverticalreflectionInbothcases,They-coordinateofeverypointonthegraphoff(x)=sinx
ismultipliedbyaTheamplitudeischangedto|a|Means“absolutevalue”andyouignorethenegativeExample5:NotesBymultiplyingExample6(a)Onthesameaxis,graph
Makesurexisinradians(b)DescribewhatishappeningExample6(a)Onthesameaxis,Example6:SolutionThegraphoff(x)=sinxismovingrightandleftExample6:SolutionThegraphoExample6:NotesBysubtractingavaluedintheargumentoff(x)=sinx,wemovethefunction…Leftwhend<0Rightwhend>0ThisisknownasahorizontaltranslationThevalueofdisaddedtothex-coordinateofeverypointonthegraphoff(x)=sinx
Dealingwithhorizontaltranslationsiscounter-intuitiveWhend<0thefunctionlookslike:f(x)=sin(x+d)andwemoveitleftWhend>0thefunctionlookslike:f(x)=sin(x–d)andwemoveitrightCommonlyreferredtoasaphaseshiftExample6:NotesBysubtractingExample7(a)Onthesameaxis,graph
Make
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《专利文献》课件
- 湖北省武汉市部分重点中学2023-2024学年高二上学期期末联考物理试卷 含解析
- 2023-2024学年河南省郑州二中共同体八年级(上)期末生物试卷
- 南阳市方城县博望镇第一初级中学2024届中考一模考试历史试卷解析卷
- 卷04-备战2022年中考生物【名校地市好题必刷】全真模拟卷(福建卷)(解析版)
- 人力资源培训规划
- 公司金融4朱叶
- 医师授权与团队协作
- 石油化工项目投标异常应对策略
- 气体安全巡查员聘用协议
- 2023年大学生心理健康教育试题题库含答案
- 医院廉政风险点防控表格措施
- 血管活性药物静脉输注护理团体解读
- 电力增容工程投标方案(技术标)
- 一级综合医院设置要求规范
- 《消费心理学》课程标准
- DB5117-T 76-2023 磷石膏基植生材料生态修复应用技术规范
- 国开电大本科《人文英语4》机考真题(第十九套)
- 新产品试产管理流程
- 丽江地区古城区2023-2024学年数学四年级第一学期期末统考模拟试题含答案
- 新中国史2023年春季学习通超星课后章节答案期末考试题库2023年
评论
0/150
提交评论