高考数学压轴题集锦-导数及其应用_第1页
高考数学压轴题集锦-导数及其应用_第2页
高考数学压轴题集锦-导数及其应用_第3页
高考数学压轴题集锦-导数及其应用_第4页
高考数学压轴题集锦-导数及其应用_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

单调递增;②当a1时,令,得x1=,x2=x(0,)()()+-+∴F(x)的单增区间为(0,),()综上所述,当时F(x)的单增区间为(0,+)当a1时,F(x)的单增区间为(0,),()(2)h(x)=x-2alnx,h/(x)=,(x>0),由题意知x1,x2是x2+2ax+1=0的两根,∴x1x2=1,x1+x2=-2a,x2=,2a=,-=-=2()令H(x)=2(),H/(x)=2()lnx=当时,H/(x)<0,H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2mea(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2mea(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2mea(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(mea﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(ea+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=ax+x2﹣xlna,∴f′(x)=axlna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=axlna+2x﹣lna=2x+(ax﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(ax﹣1)lna单调递增,故y=2x+(ax﹣1)lna单调递增,∴2x+(ax﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(ax﹣1)lna单调递增,故y=2x+(ax﹣1)lna单调递增,∴2x+(ax﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h(x)=f(x)﹣g(x)=,则,∵h(x)=f(x)﹣g(x)在(0,+∞)上单调递增,∴对∀x>0,都有,即对∀x>0,都有,.…………2分∵,∴,故实数a的取值范围是;.…………3分(2)解:设切点为,则切线方程为,即,亦即,令,由题意得,,令,则,.…………6分当时,在上单调递减;当时,在上单调递增,∴,故的最小值为﹣1;.…………7分(3)证明:由题意知,,两式相加得两式相减得即∴,即,.9分不妨令,记,令,则,∴在上单调递增,则,∴,则,∴,又,∴,即,.…………10分令,则时,,∴在上单调递增.又,∴,则,即..…………12分15.(Ⅰ)由题意,,,.…………1分设,则,由△ADP≌△CB'P,故PA=PC=x﹣y,由PA2=AD2+DP2,得即:..…………3分(Ⅱ)记△ADP的面积为,则.…………5分当且仅当时,取得最大值.故当材料长为,宽为时,最大.….…………7分(Ⅲ)于是令.…………9分关于的函数在上递增,在上递减,当时,取得最大值.故当材料长为,宽为时,最大..…………12分16.(1)时,,,,所以在处的切线方程为(2)存在,,即:在时有解;设,令,所以在上单调递增,所以1°当时,,∴在单调增,所以,所以2°当时,设,令,所以在单调递减,在单调递增所以,所以所以设,,令,所以在上单调递增,所以所以在单调递增,∴,所以,所以所以,当时,恒成立,不合题意综上,实数的取值范围为.17.(1)因为,依题意得为方程的两不等正实数根,∴,,令,,当时,;当时,,所以在上单调递增,在上单调递减,,当时,,所以∴解得,故实数的取值范围是.(2)由(1)得,,,两式相加得,故两式相减可得,故所以等价于,所以所以,即,所以,因为,令,所以即,令,则在上恒成立,,令,①当时,所以在上单调递减,所以在上单调递增,所以符合题意②当时,所以在上单调递增故在上单调递减,所以不符合题意;③当时,所以在上单调递增,所以所以在上单调递减,故不符合题意综上所述,实数的取值范围是.18.解:(1)∵f(x)=(lnx﹣k﹣1)x(k∈R),∴x>0,=lnx﹣k,①当k≤0时,∵x>1,∴f′(x)=lnx﹣k>0,函数f(x)的单调增区间是(1,+∞),无单调减区间,无极值;②当k>0时,令lnx﹣k=0,解得x=ek,当1<x<ek时,f′(x)<0;当x>ek,f′(x)>0,∴函数f(x)的单调减区间是(1,ek),单调减区间是(ek,+∞),在区间(1,+∞)上的极小值为f(ek)=(k﹣k﹣1)ek=﹣ek,无极大值.(2)∵对于任意x∈[e,e2],都有f(x)<4lnx成立,∴f(x)﹣4lnx<0,即问题转化为(x﹣4)lnx﹣(k+1)x<0对于x∈[e,e2]恒成立,即k+1>对于x∈[e,e2]恒成立,令g(x)=,则,令t(x)=4lnx+x﹣4,x∈[e,e2],则,∴t(x)在区间[e,e2]上单调递增,故t(x)min=t(e)=e﹣4+4=e>0,故g′(x)>0,∴g(x)在区间[e,e2]上单调递增,函数g(x)max=g(e2)=2﹣,要使k+1>对于x∈[e,e2]恒成立,只要k+1>g(x)max,∴k+1>2﹣,即实数k的取值范围是(1﹣,+∞).证明:(3)∵f(x1)=f(x2),由(1)知,函数f(x)在区间(0,ek)上单调递减,在区间(ek,+∞)上单调递增,且f(ek+1)=0,不妨设x1<x2,则0<x1<ek<x2<ek+1,要证x1x2<e2k,只要证x2<,即证<,∵f(x)在区间(ek,+∞)上单调递增,∴f(x2)<f(),又f(x1)=f(x2),即证f(x1)<,构造函数h(x)=f(x)﹣f()=(lnx﹣k﹣1)x﹣(ln﹣k﹣1),即h(x)=xlnx﹣(k+1)x+e2k(),x∈(0,ek)h′(x)=lnx+1﹣(k+1)+e2k(+)=(lnx﹣k),∵x∈(0,ek),∴lnx﹣k<0,x2<e2k,即h′(x)>0,∴函数h(x)在区间(0,ek)上单调递增,故h′(x)<h(ek),∵,故h(x)<0,∴f(x1)<f(),即f(x2)=f(x1)<f(),∴x1x2<e2k成立.19.(Ⅰ)由得.因为曲线在点处的切线与轴垂直,所以,解得.(Ⅱ)由(Ⅰ)知,若函数有两个极值点,则,即有两个不同的根,且的值在根的左、右两侧符号相反.令,则,所以当时,,单调递减;当时,,单调递增.又当时,;时,;时,;时,,所以.即所求实数的取值范围是.(Ⅲ)证明:令(),则,.令,则,因为,所以,,,,所以,即在时单调递增,又,所以时,,即函数在时单调递增.所以时,,即时,.20.(1)当时,,.当时,,故函数在上单调递减;当时,,故函数在上单调递增.由,.∴在上的值域为;(2)由(1)可知,,由得,由得或.所以在上单调递减,在,上单调递增;所以,,所以当且,即时,,,,使得,由的单调性知,当且仅当时,有三个不同零点.21.(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论