电磁场与微波技术(第2版)黄玉兰_第1页
电磁场与微波技术(第2版)黄玉兰_第2页
电磁场与微波技术(第2版)黄玉兰_第3页
电磁场与微波技术(第2版)黄玉兰_第4页
电磁场与微波技术(第2版)黄玉兰_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章证:AB=9x4+1x(—6)+(—6)x5=0■・・・A和B相互垂直AxB=0・・・A和B相互平行1)A=divAA=divA=dAxAy+°Azcy ~~cz=2x+2x2y+72x2y2z2(2由高斯散度定理有』Ads=JV.Ad?=J0.5dzj0,5dyj0.5(2x+2x2y+72x2y2z2)dzt —0.5 —0.5 —0.5(1)因为闭合路径在xoy平面内,故有:•dl=(ex+ex2+ey2z)(edx+edy)=xdx+x2dyxyz xy』A•dl=8⑵因为S在XOY面内,VA^•ds=(e2yz+e2x)(edxdy)=2xdxdyx zx.j(VAds)=8s所以,定理成立。1)由梯度公式du du du.Vu=e+e+eIxdx ydy zd(2丄3)=4e+10e+ex yz方向导数最大值为42+102+12=肿方向:1 (4e+10e+e)jTT7xyz(2)最小值为0,与梯度垂直证明xVu=0VA=0第二章r<a时,E=-V0=0r>a时E=-V0=-VA・(r-°2)cosq丁a2A a2A=e(-A- )cose+e(A-)smqr r2 q r2圆柱是由导体制成的表面电荷p=£°"=-2sAcosqs0~da 0能求出边界处即z=0处的E2根据D的法向量分量连续ns(5+z)=sEr1 r2Z10nE=Z卞(1取圆柱坐标系,若为磁场,根据磁场连续性方程;B有0・.・B=erpOarB=pOa丰0,所以不是磁场(2)取直角坐标▽・B=0,所以是磁场。J=VxH=0第三章第四章反射系数第四章反射系数T2=z17T.•・t2=驻波比:-z0_-1+jTT0-3+j5p=1+T2|=5+护(3)r=0.4j=0.8两圆的交点,过A作等反射系数圆交右半实轴与点1得驻波系数=4.5,K二—=0.22P延长OA交电刻度图,读数为11,以此为起点,逆时针旋转交于左半实轴得电压波各点,距负载长度叛-0.1队=0.3久。电压最大点与最小点距离为4•••电压波腹点距负载距离为犹(4)k=0.32/.p=3.125以卩=3.12画等反射系数图,与圆图右实半轴交于由A点沿等反射系数图逆时针转理U选。得至B的归一化阻抗为L二1.2+j1.3所以终负载阻抗为=Z.ZL=(9E97.5/)l0L以为圆心°oB为半径。至点顺时针旋转29点刻度至,读C点归一化阻抗=0.34-/0.18故,Z=Z.Z.=25.5-jl3・5rm </in0in第五章九cTE10=2a=4.572cmheTE20=a=2.286cm九cTE30=2a=1.534em3hcTE01=2b=2.032cmh=4cm时,heTE20vhvhcTE10,.・.传TE10波h=3cm时,hcTE20vhvhcTE10,.・.传TE10波h=1.5cm时,彳专TE10,TE20,TE30,TE01波hh(2) vavh,0vbv,hcTE20vhvhcTE10222.286cmvhv4.572cm

1. 3. 5书上P171第六章0=args=兀1098^=1098^=0.18dB1L=10lg =lOlgs221T=s=0.98ej211+s1+0.2“p=11= =1.51-s1-0.211•・s=sT12 21互易isI2+s2=0.01+0.64丰1T|11| 21・・・有耗第七章Ca)2*(方)2+Cc)2m=1.n=0,p=1・••九=7.68cm0电磁场与波课后思考题1电场强度的定义是什么?如何用电场线描述电场强度的大小及方向?电场对某点单位正电荷的作用力称为该点的电场强度,以E表示。用曲线上各点的切线方向表示该点的电场强度方向,这种曲线称为电场线。电场线的疏密程度可以显示电场强度的大小。2给出电位与电场强度的关系式,说明电位的物理意义。E=—V^静电场中某点的电位,其物理意义是单位正电荷在电场力的作用下,自该点沿任一条路径移至无限远处过程中电场力作的功。2-3什么是等位面?电位相等的曲面称为等位面。5给出电流和电流密度的定义。电流是电荷的有规则运动形成的。单位时间内穿过某一截面的电荷量称为电流。I=分为传导电流和运流电流两种。传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。电流密度:是一个矢量,以J表示。电流密度的方向为正电荷的运动方向,其大小为单位时间内垂直穿过单位面积的电荷量。dZ=J-dS

10运动电荷,电流元以及小电流环在恒定磁场中受到的影响有何不同?运动电荷受到的磁场力始终与电荷的运动方向垂直,磁场力只能改变其运动方向,磁场与运动电荷之间没有能量交换。F=qvxB当电流元的电流方向与磁感应强度B平行时,受力为零;当电流元的方向与B垂直时,受力最大,电流元在磁场中的受力方向始终垂直于电流的流动方向。 F=IdlxB当电流环的磁矩方向与磁感应强度B的方向平行时,受到的力矩为零;当两者垂直时,受到的力矩最大t=Fl=IlBl=Il2B=ISB T=I(SxB) m=IST=mxB11什么是安培环路定理?试述磁通连续性原理。JB-dl=yIi 0o=4nx10o=4nx10-7(H/m),I为闭合曲线包围的电流。真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的安培环路定理表明:电流与真空磁导率的乘积。真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的JB-dS=0真空中恒定磁场通过任意闭合面的磁通为0。磁场线是处处闭合的,没有起点与终点,这种特性称为磁通连续性原理。d①~dt2-12什么是感应电动势和感应磁通? Jd①~dt感应电场强度沿线圈回路的闭合线积分等于线圈中的感应电动势,即JE•也=_穿过闭合线圈中的磁通发生变化时,线圈中产生的感应电动势e为e=-巴dt线圈中感应电流产生的感应磁通方向总是阻碍原有刺磁通的变化,所以感应磁通又称反磁通。13什么是电磁感应定律?称为电磁感应-定律,它表明穿过线圈中的磁场变化时,导线中产生感应电场。它表明,时变磁场可以产生时变电场。1、试述真空中静电场方程及其物理意义。积分形式:少sE・dS=q/£少lE・dL=0微分形式:!・E=p/£!xE=0物理意义:真空中静电场的电场强度在某点的散度等于该点的电荷体密度与真空介电常数之比;旋度处处为零。2、已知电荷分布,如何计算电场强度?根据公式E(r)=Jv'p(r')(r-r')dV'/4n£Ir-r'I人3已知电荷分布可直接计算其电场强度。3、电场与介质相互作用后,会发生什么现象?会发生极化现象。7、试述静电场的边界条件。在两种介质形成的边界上,两侧的电场强度的切向分量相等,电通密度的法向分量相等;在两种各向同性的线性介质形成的边界上,电通密度切向分量是不连续的,电场强度的法向分量不连续。介质与导体的边界条件:enxE=0en・D=ps:若导体周围是各向同性的线性介质,则En=ps/£?p/?n=-ps/£o8、自由电荷是否仅存于导体的表面由于导体中静电场为零,由式▽・D=p得知,导体内部不可能存在自由电荷的体分布。因此,当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。3-9、处于静电场中的任何导体是否一定是等为体由于导体中不存在静电场,导体中的电位梯度▽=0,这就意味着到导体中电位不随空间变化。所以,处于静电平衡状态的导体是一个等位体。3-10、电容的定义是什么?如何计算多导体之间的电容?由物理学得知,平板电容器正极板上携带的电量q与极板间的电位差U的比值是个常数,此常数称为平板电容器的电容3-11、如何计算静电场的能量?点电荷的能量有多大?为什么?已知在静电场的作用下,带有正电荷的带电体会沿电场方向发生运动,这就意味着电场力作了功。静电场为了对外作功必须消耗自身的能量,可见静电场是具有能量的。如果静止带电体在外力作用下由无限远处移入静电场中,外力必须反抗电场力作功,这部分功将转变为静电场的能量储藏在静电场中,使静电场的能量增加。由此可见,根据电场力作功或外力作功与静电场能量之间的转换关系,可以计算静电场能量。w-1Q2点电荷的能量为:e2C设带电体的电量Q是从零开始逐渐由无限远处移入的。由于开始时并无电场,移入第一个微量dq时外力无须作功。当第二个dq移入时,外力必须克服电场力作功。若获得的电位为卩贝9外力必须作的功为<pdq,因此,电场能量的增量为pdq。已知带电体的电位随着电荷的逐渐增加而不断升高,当电量增至最终值Q时,外力作的总功,也就是电量为Q的带电体具有的能量为 W-IQ9⑷d?e已知孤立导体的电位申等于携带的电量q与电容C的之比,即9-?C代入上式,求得电量为Q的孤立带电体具有的能量为W-1Qe2C3-12如何计算电场力?什么是广义力及广义坐标?如何利用电场线判断电场力的方向?为了计算具有一定电荷分布的带电体之间的的电场力,通常采用虚位移法广义力:企图改变某一个广义坐标的力广义坐标:广义坐标是不特定的坐标。描述完整系统(见约束)位形的独立变量利用电场线具有的纵向收缩与横向扩张的趋势可以判断电场力的方向。3-13试述镜像法原理及其应用是以一个或几个等效电荷代替边界的影响,将原来具有边界的非均匀空间变成无限大的均匀自由空间,从而使计算过程大为简化。静电场惟一性定理表明。只要这些等效电荷的引入后,原来的边界条件不变,那么原来区域中的静电场就不会改变,这是确定等效电荷的大小及其位置的依据。这些等效电荷通常处于镜像位置,因此称为镜像电荷,而这种方法称为镜像法。应用:第一,点电荷与无限大的导体表面第二,电荷与导体球第三,线电荷与带电的导体圆柱第四,点电荷与无限大的介质表面3-15给出点电荷与导体球的镜像关系若导体球接地,导体球的电位为零。为了等效导体球边界的影响,令镜像点电荷q'位于球心与点电荷q的连线上。那么,球面上任一点电位为9=—q—+-q—可见,为了保证球面上任一点电位为零,必须选择镜像电荷为4兀£:4哗q=--q为了使镜像电荷具有一个确定的值,必须要求比值r'汀对于球面上任一点均具有同一数值。由图可见,若要求三角形厶OPq'与厶OqP相似,则:=f==常数。由此获知镜像电荷应为,镜像电荷离球心的距离d应为这样,根据q及q'即可计算球外空间任一点的电场强度。若导体球不接地,则位于点电荷一侧的导体球表面上的感应电荷为负值,而另一侧表面上的感应电荷为正值。导体球表面上总的感应电荷应为零值。因此,对于不接地的导体球,若引入上述的镜像电荷q'后,为了满足电荷守恒原理,必须再引入一个镜像电荷q",且必须令ff f显然=为了保证球面边界是一个等位面,镜像电荷q"必须位于球心。事实上,由于导体球不接地,因此,其电位不等零。由q及q'在球面边界上形成的电位为零,因此必须引入第二个镜像电荷q"以提供一定的电位。1、什么是弛豫时间?它与导电介质的电参数关系如何?2、给出恒定电流场方程式的积分形式和微分形式。积分形式:jJ'd=0jJ-dS=0微分形式:0XJ=0V-J=03、试述恒定电流场的边界条件。在两种导电介质的边界两侧,电流密度矢量的切向分量不等,但其法向分量连续。4、如何计算导电介质的热耗?--单位体积中的功率损失:pl=E'J总功率损失:P=pldV=UI5、如何计算导电介质的电阻?导电介质的电位满足拉普拉斯方程V狗用边'界条件求出导电介质中的电位,根据求出电流密度,进一步求出电流i=JJ.dS•从而求电阻。S1、试述真空中恒定磁场方程式及其物理意义VxB=MJ'为.B=0jB-dS=0S真空中恒定磁场方程的微分形式jB.dlVxB=MJ'为.B=0jB-dS=0S真空中恒定磁场方程的微分形式左式表明,真空中某点恒定磁场的磁感应强度的旋度等于该点的电流密度与真空磁导率的乘积。右式表明,真空中恒定磁场的磁感应强度的散度处处为零。可见,真空中恒定磁场是有旋无散的。B(rB(r)=检JJX厅一r)dS'4nS' |r一rrI3利用釦)=£J)⑺%広-r)dW4nv, r_r'pB(r)=匕J沁x(r-◎4ni|r一r'I33、给出矢量磁位满足的微分方程式。矢量磁位: B=VxA- -其满足矢量泊松方程:V2A=-卩0J①=J;A①=J;A-dll4、磁场与介质相互作用后,会发生什么现象?什么是顺磁性介质、抗磁性介质和铁磁性介质?会发生磁化现象。顺磁性介质:正常情况下原子中的合成磁矩不为零,宏观合成磁矩为零,在外加磁场作用下,磁偶极子的磁矩方向朝着外加磁场方向转动,因此使得合成磁场增强的介质抗磁性介质:正常情况下原子中的合成磁矩为零,当外加磁场时电子发生进动,产生的附加磁矩方向总是与外加磁场方向相反,导致合成磁场减弱的介质。铁磁性介质:在外磁场作用下,大量磁畴发生转动,各个磁畴方向趋向一致,且畴界面积还会扩大,因而产生较强的磁性的介质。5、什么是磁化强度?它与磁化电流的关系如何?单位体积中磁矩的矢量和称为磁化强度。磁化电流密度以J'表示。体分布磁化电流:J'=vxM面分布磁化电流:J=MxeSn5-6、试述介质中恒定磁场方程式及其物理意义。什么是磁场强度及磁导率?相对磁导率是否可以小于一?JH-dl=1它表明媒质中的磁场强度沿任一闭合曲线的环量等于闭合曲线包围的传导电流。。VxH=J该式称为媒质中安培环路定律的微分形式。它表明媒质中某点磁场强度的旋度等于该点传导电流密度。5-7、什么是均匀与非均匀、线性与非线性、各向同性与各向异性的磁性能?三者之间有无联系?若介质的磁导率不随空间变化,则成为磁性能均匀介质。反之则称为磁性非均匀介质。若磁导率与外加磁场强度的大小及方向均无关,磁通密度与磁场强度成正比则称为磁性能各向同性的线性介质。对于均匀线性的各向同性介质,只要将真空中恒定磁场方程式中的真空磁导率环卫介质磁导率即可应用。5-8、试述恒定磁场的边界条件。恒定磁场的磁场强度切向分量是连续的,法向分量是不连续的;磁通密度的法向分量是连续的,切向分量不连续。理想磁导体的边界条件:enXH=0.5-9、理想导电体(◎=g)中是否可以存在恒定磁场?理想磁导体⑴=)中是否可以存在静电场?磁导率为无限大的媒质称为理想导磁体。在理想导磁体中不可能存在磁场强度。5-10、介电常数£、电导率◎及磁导率卩分别描述介质什么特性?介质的极化性能、导电性能及磁化性能5-11、什么是自感与互感?如何进行计算?两个回路,回路电流分别为II和I2,本身产生的磁通链分别为①11和①22,在对方中产生的磁通链分别为①12和①21,则称L11=O11/I1为回路L1的自感,M12=O12/I2为回路L2对L1的互感。互感可正可负,其值正负取决于两个线圈的电流方向,但自感始终为正值。13、如何计算载流系统的磁场能量?w=£-1tw二送1JiA-dfm 2jj m 2lji j1什么是位移电流?它与传导电流及运流电流的本质区别是什么?为什么在不良导体中位移电流有可能大于传导电流?位移电流密度是电通密度的时间变化率,或者说是电场的时间变化率。自由电子在导体中或电解液中形成的传导电流以及电荷在气体中形成的运流电流都是电荷运动形成的,而位移电流不是电荷运动,而是一种人为定义的概念。VD在静电场中,由于:(,自然不存在位移电流。在时变电场中,电场变化愈快,产生的位移电流密度也愈大。若某一时刻电场的时间变化率为零,即使电场很强,产生的位移电流密度也为零,故在不良导体中位移电流有可能大于传导电流。女6-2试述麦克斯韦方程的积分形式与微分形式,并解释其物理意义.积分形式徴分形式为&_J卫十爭3Vx =.7-ha/3&f£dZ=-(姮‘左xx*XT—-az族通谨绽性原理J/J-fLY-OVJ?=0奇斯定律尹”^LS=tjV* =/?物理意义:时变电磁场中的时变电场是有旋有散的,时变磁场是有旋无散的,但是,时变电磁场中的电场与磁场是不可分割的,因此时变电磁场是有旋有散场。在电荷及电流都不存在的无源区中,时变电磁场是有旋无散的。时变电场的方向与时变磁场的方向处处相互垂直。6-3什么是介质的特性方程?Od — — — — — — —V•J=— D=£ E B =yH J =bE+J'ot4试述时变电磁场的边界条件,是否在任何边界上电场强度的切向分量及磁通密度的法向分量总是连续的?是第一,在任何边界上电场强度的切向分量是连续的 eX(E—E)=0 Eit=E2t第二,在任何边界上,磁感应强度的法向分量是连续的 ”叮(B2一B1)=0 二B2:

第三,电位移的法向分量边界条件与媒质特性有关 e-(D-D)=pd—d=p第四,磁场强度的切向分量边界条件与媒质特性有关 e1x(H-h)=sj2exH=js6-5什么是标量位和矢量位?它们有何用途? 1 2 1Sn S矢量位:已知时变磁场是无散场,则它可以表示为矢量场a的旋度,即可令B=vxA式中A称为矢量位标量位:矢量场为无旋场。因此它可以用一个标量场申的梯度来示.即可令 .式中申称E为标量位V9冼用途:时变电磁场的场强与场源的关系比较复杂,直接求解需要较多的数学知识。为了简化求解过程,引入标量位与矢量位作为求解时变电磁场的两个辅助函数6给出标量位和矢量位满足的微分方程及其解.矢量位:B=vxA「IelI、 ©2A「如)V2A—V(V-A)= +V—I—_亦 QVdtp 力丿标量位: E+云=-V9 V2p+Qt(V°A)=—77什么是洛伦兹条件?为什么它与电荷守恒定律是一致的?洛伦兹条件:令 1 7Q9V-A=—pe—Qt _与p关系的洛伦兹条件一定符合电荷守时变电磁场必须符合电荷守恒定律因此说明A与p关系的洛伦兹条件一定符合电荷守8什么是电磁辐射?为何时变电荷和电流能产生电磁辐射?电磁辐射:即使在同一时刻源已消失,只要前一时刻源还存在,它们原先产生的空间场仍然存在,这就表明源已将电磁能量释放到空间,而空间电磁能量可以脱离源单独存在,这种现象称为电磁辐射.只有时变电磁场才有这种辐射特性,而静态场完全被源所束缚.6-9如何计算时变电磁场的能量密度?能流密度矢量的定义是什么?如何根据电场及磁场计算能流密度? 1「 ]时变电磁场的能量密度: w(r,t)=-eE2(r,t)+pH2(r,t)」能流密度矢量:其方向表示能量流动方向,大小表2示单位时间内垂直穿过单位面积的能量.能流密度矢量:S(r)=E(r)XH(r)6-10什么是正弦电磁场?如何用复矢量表示正弦电磁场?正弦电磁场:其场强的方向与时间无关,但其大小随时间的变化规律为正弦函数具有这种变E(r,t)=E(r)sin[①t+屮(r)]化规律的时变电磁场称正弦电磁场。TOC\o"1-5"\h\zm e复矢量:E(r)=E(r)ej^i正弦电磁场: E(r,t)=Im[E(r)ej®t]m m m6-11给出麦克斯韦方程及其位函数方程的复矢量形式.麦克斯韦:以及:VxH麦克斯韦:以及:VxH=J+j®D—► —►VxE=—j®B—►V-B=0—►V-D=p位函数: v2ja+®2peA=—pJV-J=-j3p—► —►D=eEB=pHJ=bE+J‘V2p+32pep=—pe12什么是复能流密度矢量?试述其实部及虚部的物理意义.复能流密度矢量 S(r)=E(r)xh*(r)其实部表示能量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论