




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抛物线的几何性质2022/11/302022/11/30抛物线的几何性质2022/11/302022/11/30结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几何性质:(1)范围(2)对称性(3)顶点类比探索x≥0,y∈R关于x轴对称,对称轴又叫抛物线的轴.抛物线和它的轴的交点.2022/11/302022/11/30结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几(4)离心率(5)焦半径(6)通径始终为常数1通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2P思考:通径是抛物线的焦点弦中最短的弦吗?2022/11/302022/11/30(4)离心率始终为常数1通过焦点且垂直对称轴的直线,与抛物线特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;5.抛物线标准方程中的p对抛物线开口的影响.P越大,开口越开阔2022/11/302022/11/30特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它lFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤
0x∈R(0,0)x轴y轴12022/11/302022/11/30lFyxOlFyxOlFyxOlFyxOy2=2pxy2例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点M(2,)的抛物线有几条,求它的标准方程,例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my(m≠0)),可避免讨论y2=4x焦点弦的长度2022/11/302022/11/30例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点例2.斜练习:1.过抛物线的焦点,作倾斜角为的直线,则被抛物线截得的弦长为y2=8x2.过抛物线的焦点做倾斜角为的直线L,设L交抛物线于A,B两点,(1)求|AB|;(2)求|AB|的最小值.2022/11/302022/11/30练习:1.过抛物线的焦点,作倾斜角为yy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0y∈Rx≤0y∈Rx∈Ry≥0y≤0x∈RlFyxO关于x轴对称
关于x轴对称
关于y轴对称
关于y轴对称(0,0)(0,0)(0,0)(0,0)2022/11/302022/11/30y2=2pxy2=-2pxx2=2pyx2=例3.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.xOyFABD练习:P68T32022/11/302022/11/30例3.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛yOxBA2022/11/302022/11/30yOxBA2022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/30等腰直角三角形AOB内接于抛物线y2=2px(P>0),O为抛物线的顶点,OA⊥OB,则ΔAOB的面积为A.8p2 B.4p2 C.2p2 D.p22022/11/302022/11/30等腰直角三角形AOB内接于抛物线y2=2px(P>0),O为1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是
.2、一个正三角形的三个顶点,都在抛物线上,其中一个顶点为坐标原点,则这个三角形的面积为
。2022/11/302022/11/301、已知抛物线的顶点在原点,对称2022/11/3例2、已知直线l:x=2p与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.证明:由题意得,A(2p,2p),B(2p,-2p)所以=1,=-1因此OA⊥OB推广1若直线l过定点(2p,0)且与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.xyOy2=2pxABL:x=2pC(2p,0)xyOy2=2pxABlC(2p,0)证明:设l的方程为y=k(x-2p)或x=2p
所以OA⊥OB.代入y2=2px得,可知又2022/11/302022/11/30例2、已知直线l:x=2p与抛物线=2px(p>0)直线l过定点(2p,0)推广2:
若直线l与抛物线=2px(p>0)交于A、B两点,且OA⊥OB,则__________
xyOy2=2pxABlC(2p,0)验证:由得所以直线l的方程为即而因为OA⊥OB,可知推出,代入得到直线l
的方程为所以直线过定点(2p,0).高考链接:过定点Q(2p,0)的直线与y2=2px(p>0)交于相异两点A、B,以线段AB为直径作圆H(H为圆心),试证明抛物线顶点在圆H上。2022/11/302022/11/30直线l过定点(2p,0)推广2:若直线l与抛物线=2小结:1.掌握抛物线的几何性质:范围、对称性、顶点、离心率、通径;2.会利用抛物线的几何性质求抛物线的标准方程、焦点坐标及解决其它问题;2022/11/302022/11/30小结:1.掌握抛物线的几何性质:范围、对称性、顶点、离心率、抛物线的几何性质2022/11/302022/11/30抛物线的几何性质2022/11/302022/11/30结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几何性质:(1)范围(2)对称性(3)顶点类比探索x≥0,y∈R关于x轴对称,对称轴又叫抛物线的轴.抛物线和它的轴的交点.2022/11/302022/11/30结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几(4)离心率(5)焦半径(6)通径始终为常数1通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2P思考:通径是抛物线的焦点弦中最短的弦吗?2022/11/302022/11/30(4)离心率始终为常数1通过焦点且垂直对称轴的直线,与抛物线特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;5.抛物线标准方程中的p对抛物线开口的影响.P越大,开口越开阔2022/11/302022/11/30特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它lFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤
0x∈R(0,0)x轴y轴12022/11/302022/11/30lFyxOlFyxOlFyxOlFyxOy2=2pxy2例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点M(2,)的抛物线有几条,求它的标准方程,例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my(m≠0)),可避免讨论y2=4x焦点弦的长度2022/11/302022/11/30例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点例2.斜练习:1.过抛物线的焦点,作倾斜角为的直线,则被抛物线截得的弦长为y2=8x2.过抛物线的焦点做倾斜角为的直线L,设L交抛物线于A,B两点,(1)求|AB|;(2)求|AB|的最小值.2022/11/302022/11/30练习:1.过抛物线的焦点,作倾斜角为yy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0y∈Rx≤0y∈Rx∈Ry≥0y≤0x∈RlFyxO关于x轴对称
关于x轴对称
关于y轴对称
关于y轴对称(0,0)(0,0)(0,0)(0,0)2022/11/302022/11/30y2=2pxy2=-2pxx2=2pyx2=例3.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.xOyFABD练习:P68T32022/11/302022/11/30例3.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛yOxBA2022/11/302022/11/30yOxBA2022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/302022/11/30等腰直角三角形AOB内接于抛物线y2=2px(P>0),O为抛物线的顶点,OA⊥OB,则ΔAOB的面积为A.8p2 B.4p2 C.2p2 D.p22022/11/302022/11/30等腰直角三角形AOB内接于抛物线y2=2px(P>0),O为1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是
.2、一个正三角形的三个顶点,都在抛物线上,其中一个顶点为坐标原点,则这个三角形的面积为
。2022/11/302022/11/301、已知抛物线的顶点在原点,对称2022/11/3例2、已知直线l:x=2p与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.证明:由题意得,A(2p,2p),B(2p,-2p)所以=1,=-1因此OA⊥OB推广1若直线l过定点(2p,0)且与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.xyOy2=2pxABL:x=2pC(2p,0)xyOy2=2pxABlC(2p,0)证明:设l的方程为y=k(x-2p)或x=2p
所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 把握2024年计算机基础考试要点试题及答案
- 酒店防控疫情培训课件
- 2025年小学语文考试支持材料试题及答案
- 2024年汽车维修工安全知识考核试题及答案
- 思维导图的小自考汉语言考试试题及答案
- 2024年汽车维修工在团队中的角色与责任试题及答案
- 校园法治安全教育
- 影响二手车流通率的因素分析试题及答案
- 2024年教育研究统计试题答案
- 经典药物作用试题及答案
- 上海市徐汇区2022届九年级中考二模化学试卷+答案
- 气化炉的类型
- GB/T 39167-2020电阻点焊及凸焊接头的拉伸剪切试验方法
- GB 24155-2009电动摩托车和电动轻便摩托车安全要求
- 人教版七年级下册数学各单元基础知识填空+专项复习题
- 纪委书记政治画像
- 沉井施工难点和解决方案
- 计算流体力学完整课件
- 申论答题纸(A4完美打印版)
- 生物武器伤害及其防护课件
- 机械基础 第2版全书电子教案
评论
0/150
提交评论