电气新手必知:谐振电路_第1页
电气新手必知:谐振电路_第2页
电气新手必知:谐振电路_第3页
电气新手必知:谐振电路_第4页
电气新手必知:谐振电路_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电气新手必知:谐振电路“谐振”,只要是和电打交道,多多少少都会听过这个词。谐振电路在无线电工程、电子测量技术等许多电路中应用非常广泛。谐振的存在有利有弊。在电子和无线电工程中,经常要从许多电信号中选取出所需的电信号,同时又把不需要的电信号加以抑制或滤出,为此,就需要一个选择电路,即谐振电路。另一方面,在电力工程中,电路中由于谐振的产生而造成过电压或过电流等危害。不管是从利用方面或是限制其危害方面来看,研究谐振电路都有着重要的意义,一方面要充分利用它的特点,另一方面又要预防它产生的危害。现在,就让我来带领大认识“谐振”吧!在同时含有电感(L)和电容(C)的交流电路中,如果端口总电压和总电流同相,这时就称电路处于谐振状态。此时电路的电源与电感和电容之间不再有能量的交换,电路呈电阻性。回顾我们之前所学的单一参数电路或RLC电路,可以知道,电感和电容的存在会使得电压和电流存在一定的相位差,且电流一定时,电感两端的电压与电容两端的电压方向相反,如图35-1所示。假设电感两端的电压与电容两端的电压大小相等,端口总电压等于三者电压相加,很显然,此时电路中的电压和电流相位相同。电阻电路电感电踹也容电路图35-1虽然谐振电路中,端口总电压和总电流同相,但是我们不能直接将电压与电流同相位的交流电路称为谐振电路,这是因为,形成谐振电路必须要有一个前提,那就是电路中要同时存在电感和电容!根据电感L和电容C连接方式的不同可以将谐振电路分为两种,即由电感L和电容C串联组成的谐振电路称为串联谐振电路;由电感L和电容C并联组成的谐振电路称为并联谐振电路,如图35-2所示。两种谐振电路所产生的影响有很大的不同。虽然两种电路中,端口总电压和总电流都是同相位,但是,流过电感和电容的电流、电感和电容两端的电压在不同的连接方式下有着很大的区别。从图35-2的两种电路中,可以比较直观的看出,在串联谐振电路中,流过电感和电容的电流相等,在并联谐振电路中,电感两端的电压与电容两端的电压相等,而我们要知道的是,串联谐振电路中电感和电容的电压是怎样的,并联电路中电感和电容的电流又有什么特点。图35-2—、串联谐振电路在电阻、电感及电容串联所组成的交流电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的端口总电压u与总电流i的相位相同,电路呈现电阻性,这种现象叫串联谐振。

如果大家有学习过《电工基础》系列文章的上两篇,那么对于RLC串联电路,可以说是相当熟悉了,在RLC串联电路中,令感抗等于容抗,所得的电路,其实就是我们这次要学习的串联谐振电路。谐振条件:<p-arctanc-0X"X「或麟-」-2弘"_马可得谐振频率为『图35-3在上图35-3所示的串联谐振电路中,其中感抗等于容抗,端口总电压与总电流同相位,此时的阻抗角恰好为0°(也可根据阻抗三角形判断),谐振频率如图35-3所示。根据谐振频率的表达式,可以得到使电路发生谐振的方法:①当电源频率f一定时,可以调节L、C参数,使得f0等于f;②当电路参数L、C一定时,调节电源频率f,使得f=f0。根据串联谐振的条件,可以得到它的一些特征。如下图35-4所示,根据阻抗的基本表达式,其虚部为0,此时有阻抗Z=R,有小值,即在RLC的串联交流电路中,发生谐振时阻抗小。由于阻抗小,根据欧姆定律的一般公式I=U/R,当电源电压一定时,电流有大值,即在RLC的串联交流电路中,发生谐振时电流大。图35-4从图35-4(2)中,可以看到,电阻两端的电压其实就等于端口总电压,如电源电压不变,那么电阻两端的电压显然也会不变。这里要注意的是,虽然串联谐振电路中,端口总电压与总电流同相位,且等于电阻两端的电压,但这并不代表电感和电容上就没有电压。从图35-4(4)和相量图上,可以看出,电感电压与电容电压大小相等,方向相反。若使电路始终处于串联谐振状态,随着电感(电容)电压的增大(减小),电容(电感)电压也会随之增大(减小),且有可能大于端口总电压。也就是说,当感抗等于容抗且远大于电阻时,即XC=XL>>R时,电感电压和电容电压将远大于电源电压,即UL=UC>>UR,可能会击穿线圈或电容的绝缘。所以在电力系统中,一般要避免发生串联谐振情况,因为电力系统中的电压等级本来就很高,一旦发生串联谐振,产生串联谐振过电压,给设备和线路等带来不利影响。在谐振电路中,有一个概念非常重要,那就是“品质因数”。在工程上,把电路谐振时的感抗XL0和容抗XC0称为电路的特征阻抗,用p表示,此时,理想串联RLC电路的品质因数就定义为特征阻抗p与电路的总电阻R之比,用符号Q表示,即Q=p/R=XL0/R=XC0/R。会0_。l_会0_。l_。_L稣£_%£_]I.R申联谐振此时有.UL=Uc=QU,即:ul=i.xl=^cj=qu既然我们现在学习的是串联谐振电路,为了让大家更好地理解品质因数这个概念,现在我们就以串联谐振电路为例,如上图35-5所示,此时品质因数为电感电压(或电容电压)与端口总电压的比值,也就是说,串联谐振时,电感电压与电容电压相互抵消,但其本身不为零,而是电源电压的Q倍,所以,串联谐振又称为电压谐振。品质因数是表征串联谐振电路的谐振质量,例如在无线电工程上,无线电信号一般很弱,但这个信号可以通过串联谐振电路进行放大,从而达到选择信号的作用,品质因数越大,显然信号的放大作用越明显。

理解了品质因数后,我们接着来学习谐振曲线。谐振曲线是指:是在一个含电感或电容的动态电路中,电路中的电学量(电流、电导、磁链、电压、电荷量等)随频率(角频率)变化的曲线。在串联谐振电路中,其谐振曲线主要是阻抗随频率变化的曲线(阻抗频率特性)和电流随频率变化的关系曲线。4="+性-阮)‘口〈气(容性)n|Z|T—%(阻性)=>|/|=R

稣感性)n|z|T图35-6如上图35-6所示,在RLC串联电路中,由感抗XL=3L,可得感抗与角频率(或频率f)的关系曲线为过原点的直线;由容抗XC=1/3C,可得感抗与角频率(或频率f)的关系曲线为反比例函数曲线,而电阻不随频率的变化而变化,为一水平直线。由阻抗Z=Rj(XL-XC),根据该表达式合并感抗、容抗与电阻的三条曲线,就得到阻抗随角频率(频率)变化的关系曲线,此时感抗与容抗的交点即为谐振频率点,在该点阻抗有小值,而随着频率的改变(变大或变小),阻抗都会随之增大。另外,从图中可以看出,RLC串联电路的谐振频率只有一个,且仅与电路中的L、C有关,与R无关,30(f0)称为电路的固有频率(或自由频率)。比较图35-6中的感抗和容抗的曲线,可以发现,①当电源频率小于固有频率时,此时电路呈容性;②当电源频率等于固有频率时,此时电路呈电阻性;③当电源频率大于固有频率时,此时电路呈感性。RLC串联电路的电流随角频率(频率)变化的关系曲线如下图35-7所示,当电源频率等于固有频率,即电路处于串联谐振时,电流由大值,这在上文也已经提到过,而随着频率的变化(变大或变小),电流都会随之变小。另外,当电源频率固定且为谐振频率时,若改变电路中的电阻值,显然由谐振电流I0=U/R,此时电路中的电流也会随之改变,即电阻越小,电流越大,反之,电阻越大,电流越小。如图35-7所示,当电源频率固定且为谐振频率时,品质因数也会随着电阻的变小而增大,反之,电阻越大,品质因数越小。图35-7电路具有选择接近谐振频率附近的电流的能力称为选择性。这句话可以这样理解,因为越接近谐振频率附近,电路中的电流就会越大,若作为信号而言,那么它也就越容易被接收到。而且,Q值越大,即感抗(或容抗)与电阻的比值越大,例如正如图35-7中的电阻变小、电容变小或电感增大都可以使Q值变大,电流随频率变化的关系曲线也就会越尖锐,此时电路的选择性越好。提及电路的选择性,就不得不提到一个新的概念“通频带”。即当电流下降到0.707I0时所对应的上下限频率之差,称为通频带。

4:谐振频率金下限截止频率f2:上限截止频率如上图35-8为电流随频率变化的关系曲线,可以看到,Q值越大,通频带宽度越小,电路的选择性越好,抗干扰能力越强。简单来说,就像信号的传输,当干扰信号和所需信号频率比较接近,那么它们在RLC串联谐振电路中所产生的电流也会相近,此时,对于接受装置来说,如果Q值较小,通频带宽度较大,就不能很好地区分所需信号和干扰信号,也就是说,电路的选择性不够理想。串联谐振可以称为电压谐振,那么,并联谐振是不是可以称为电流谐振呢?我们接下来继续学习并联谐振电路。二、并联谐振电路

并联谐振的定义与串联谐振的定义是一样的,即端口上的电压与输入电流(总电流)同相时的工作状况称为谐振。并联谐振的理解比起串联谐振会难一点,我们就以几种不同的情况加以分析。1■纯电感和纯电容的并联图35-9⑴后以感性)上图35-9为一理想的纯电感与纯电容并联的电路模型,结合图35-1的向量图,以端口电压为参考相量,电感和电容并联,两者的电压相等,类似于电阻的并联,电阻并联电路中,阻值越小的支路电流越大。同理,电感和电容的并联电路中,感抗小于容抗时,那么流过电感支路的电流就大于流过电容支路的电流,如图35-9(1)所示,可以得到总电流滞后端口电压90°,此时电路呈感性;而当感抗大于容抗时,那么流过电感支路的电流就小于流过电容支路的电流,如图35-9(2)所示,可以得到总电流超前端口电压90°,图35-9⑴后以感性)当感抗等于容抗时,流过电感支路的电流就等于流过电容支路的电流,且两支路电流方向相反,如图35-9(3)所示,此时总电流恰好为0(也可以说是与电压相量同相位),电路处于并联谐振状态。由感抗等于容抗可以得出此时的谐振频率如图35-9所示,可以看到,该谐振频率的表达式与串联谐振时的频率表达式是一样的。类似于串联谐振时端口总电压等于电阻两端的电压,而电感和电容两端的电压却不为零,并联谐振时虽然总电流为零,但是,流过电感和电容两端的电流并不为零。因为并联谐振时流过电感的电流与流过电容的电流代数和为零,所以并联谐振又称为电流谐振。2,电阻、电感和电容分别并联“/c「-■(3)IL=/c,}=/r(谐振)谐振频率;•UUUr1=>——=——=>(yr,£=-&&“与。一S质IM应■h图35-10如上图35-10所示的RLC并联电路是RLC串联电路相对于的另一种形式的谐振电路。与LC并联电路相类似,结合图35-1的向量图,以端口电压为参考相量,电阻、电感和电容并联,三者的电压相等,当感抗小于容抗时,那么流过电感支路的电流就大于流过电容支路的电流,如图35-10(1)所示,可以得到总电流滞后端口电压,此时电路呈感性;而当感抗大于容抗时,那么流过电感支路的电流就小于流过电容支路的电流,如图35-10(2)所示,可以得到总电流超前端口电压,此时电路呈容性。当感抗等于容抗时,流过电感支路的电流就等于流过电容支路的电流,且两支路电流方向相反,如图35-10(3)所示,此时总电流恰好为流过电阻的电流,与电压同相位,电路处于并联谐振状态。由感抗等于容抗可以得出此时的谐振频率如图35-10所示,可以看到,该谐振频率的表达式与LC并联电路的谐振频率表达式、串联谐振时的频率表达式都是一样的。同理,虽然并联谐振时虽然总电流等于电阻支路的电流,但是,流过电感和电容两端的电流并不为零。3•电感线圈(用RmL串联组合)和电容并联两支路阻抗分别为*Z]=R+jcoLt丁11_—-J-jMMR+j应—(A+jfti)并联总阻抗为:Z一项与一」普.叼R+j应乙+Zz工+M+j戒)1+」如?C-侮LCjM图35-11上图35-11所示为一电感线圈(用R和L串联组合)和电容并联电路。回顾我们之前所学的并联阻抗的知识,求出等效总阻抗的表达式如图所示。实际中线圈的电阻很小,往往忽略不计,而在谐振时感抗远大于电阻,即30L>>R,根据这一条件,简化图35-11中的阻抗表达式,可以得到谐振的近似条件,如下图35-12所示。并联总阻抗为:〜涪,匹,御=—?一rl+jfu/?C-coLCl+jrtj/?C-coLC|j“K.r)coL由Z乂飞厂—!—当j(X一」一)瞒时,为实数苧顼*一£)血RC即此时有端口电压与总电流同相位,满足谐振条件得谐振频率饥露1或爵1\jlCjLC图35-12综上所述,并联谐振时的特点有以下几点:端口电压与总电流同相位。谐振频率的表达式与串联谐振时一样。纯电感与纯电容并联谐振时总电流为0,等价于电路总阻抗Z有大值,为无穷大,即Zmax=8。电感线圈和电容并联谐振时(满足30L>>R)总阻抗有大值(图35-12中并联总阻抗表达式中分母有小值),即|Z0|=L/RC,电路呈电阻性。⑸当电源电压恒定时,总电流小;当为恒流源供电时,电路的端电压大,这是因为此时总阻抗为大值,U=IS|Z0|。(6)支路电流为总电流的Q倍。以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论