北大结构化学习题与答案01_第1页
北大结构化学习题与答案01_第2页
北大结构化学习题与答案01_第3页
北大结构化学习题与答案01_第4页
北大结构化学习题与答案01_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.PAGE.《结构化学》第一章习题1001首先提出能量量子化假定的科学家是:<><A>Einstein<B>Bohr<C>Schrodinger<D>Planck1002光波粒二象性的关系式为_______________________________________。1003德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。1004在电子衍射实验中,││2对一个电子来说,代表___________________。1005求德布罗意波长为0.1nm的电子的动量和动能。1006波长λ=400nm的光照射到金属铯上,计算金属铯所放出的光电子的速率。已知铯的临阈波长为600nm。1007光电池阴极钾表面的功函数是2.26eV。当波长为350nm的光照到电池时,发射的电子最大速率是多少?<1eV=1.602×10-19J,电子质量me=9.109×10-31kg>1008计算电子在10kV电压加速下运动的波长。1009任一自由的实物粒子,其波长为λ,今欲求其能量,须用下列哪个公式<><A><B><C><D>A,B,C都可以1010对一个运动速率v<<c的自由粒子,有人作了如下推导:ABCDE结果得出的结论。问错在何处?说明理由。1011测不准关系是_____________________,它说明了_____________________。1013测不准原理的另一种形式为ΔE·Δt≥h/2π。当一个电子从高能级向低能级跃迁时,发射一个能量子h,若激发态的寿命为10-9?s,试问的偏差是多少?由此引起谱线宽度是多少<单位cm-1>?1014"根据测不准原理,任一微观粒子的动量都不能精确测定,因而只能求其平均值"。对否?1015写出一个合格的波函数所应具有的条件。1016"波函数平方有物理意义,但波函数本身是没有物理意义的"。对否.<>1017一组正交、归一的波函数1,2,3,…。正交性的数学表达式为,归一性的表达式为。1018│<x1,y1,z1,x2,y2,z2>│2代表______________________。1020任何波函数<x,y,z,t>都能变量分离成<x,y,z>与<t>的乘积,对否?<>1021下列哪些算符是线性算符<><A><B>2<C>用常数乘<D><E>积分1022下列算符哪些可以对易<><A>和<B>和<C>x和<D>x和1023下列函数中<A>coskx<B>e-bx<C>e-ikx<D><1>哪些是的本征函数;<><2>哪些是的本征函数;<><3>哪些是和的共同本征函数。<>1024在什么条件下,下式成立?<+><->=2-21025线性算符具有下列性质<U+V>=U+V<cV>=cV式中c为复函数,下列算符中哪些是线性算符?<><A>U=λU,λ=常数<B>U=U*<C>U=U2<D>U=<E>U=1/U1026物理量xpy-ypx的量子力学算符在直角坐标系中的表达式是_____。1027某粒子的运动状态可用波函数=Ne-ix来表示,求其动量算符x的本征值。1029设体系处在状态=c1211+c2210中,角动量M2和Mz有无定值。其值为多少?若无,则求其平均值。1030试求动量算符x=的本征函数<不需归一化>。1031下列说法对否:"=cosx,px有确定值,p2x没有确定值,只有平均值。"<>1032假定1和2是对应于能量E的简并态波函数,证明=c11+c22同样也是对应于能量E的波函数。1033已知一维运动的薛定谔方程为:+V〔x]=E1和2是属于同一本征值的本征函数,证明:1-2=常数1034限制在一个平面中运动的两个质量分别为m1和m2的质点,用长为R的、没有质量的棒连接着,构成一个刚性转子。<1>建立此转子的Schrödinger方程,并求能量的本征值和归一化的本征函数;求该转子基态的角动量平均值。已知角动量算符=z=-i。1035对一个质量为m、围绕半径为R运行的粒子,转动惯量I=mR2,动能为M2/2I,2=。Schrödinger方程=E变成=E。解此方程,并确定允许的能级。1036电子自旋存在的实验根据是:<><A>斯登--盖拉赫<Stern-Gerlach>实验<B>光电效应<C>红外光谱<D>光电子能谱1037在长l=1nm的一维势箱中运动的He原子,其deBroglie波长的最大值是:<><A>0.5nm<B>1nm<C>1.5nm<D>2.0nm<E>2.5nm1038在长l=1nm的一维势箱中运动的He原子,其零点能约为:<><A>16.5×10-24?J<B>9.5×10-7J<C>1.9×10-6J<D>8.3×10-24?J<E>1.75×10-50?J1039一个在一维势箱中运动的粒子,<1>其能量随着量子数n的增大:<><A>越来越小<B>越来越大<C>不变<2>其能级差En+1-En随着势箱长度的增大:<><A>越来越小<B>越来越大<C>不变1041立方势箱中的粒子,具有E=的状态的量子数。nxnynz是<><A>211<B>231<C>222<D>2131042处于状态<x>=sin的一维势箱中的粒子,出现在x=处的概率为<><A>P=<>=sin<·>=sin=<B>P=[<>]2=<C>P=<>=<D>P=[<>]2=<E>题目提法不妥,所以以上四个答案都不对1043在一立方势箱中,的能级数和状态数分别是<势箱宽度为l,粒子质量为m>:<><A>5,11<B>6,17<C>6,6<D>5,14<E>6,141044一个在边长为a的立方势箱中的氦原子,动能为mv2=kT,求对应于每个能量的波函数中能量量子数n值的表达式。1045〔1一电子处于长lx=2l,ly=l的二维势箱中运动,其轨道能量表示式为=__________________________;〔2若以为单位,粗略画出最低五个能级,并标出对应的能量及量子数。1046质量为m的一个粒子在长为l的一维势箱中运动,<1>体系哈密顿算符的本征函数集为_______________________________;<2>体系的本征值谱为____________________,最低能量为____________;<3>体系处于基态时,粒子出现在0─l/2间的概率为_______________;<4>势箱越长,其电子从基态向激发态跃迁时吸收光谱波长__________;<5>若该粒子在长l、宽为2l的长方形势箱中运动,则其本征函数集为____________,本征值谱为_______________________________。1047质量为m的粒子被局限在边长为a的立方箱中运动。波函数211<x,y,z>=_________________________;当粒子处于状态211时,概率密度最大处坐标是_______________________;若体系的能量为,其简并度是_______________。1048在边长为a的正方体箱中运动的粒子,其能级E=的简并度是_____,E'=的简并度是______________。1049"一维势箱中的粒子,势箱长度为l,基态时粒子出现在x=l/2处的概率密度最小。"是否正确?1050对于立方势箱中的粒子,考虑出的能量范围,求在此范围内有几个能级?在此范围内有多少个状态?1051一维线性谐振子的基态波函数是=Aexp[-Bx2],式中A为归一化常数,B=<k>1/2/h,势能是V=kx2/2。将上式代入薛定谔方程求其能量E。1052分子CH2CHCHCHCHCHCHCH2中的电子可视为在长为8Rc-c的一维势箱中运动的自由粒子。分子的最低激发能是多少?它从白色光中吸收什么颜色的光;它在白光中显示什么颜色?<已知Rc-c=140pm>1053被束缚在0<x<a区间运动的粒子,当处于基态时,出现在0.25a≤x≤0.7a区间内的概率是多少?1054一个电子处于宽度为10-14m的一维势箱中,试求其最低能级。当一个电子处于一个大小为10-14m的质子核内时,求其静电势能。对比上述两个数据,能得到什么结论?<已知电子质量me=9.109×10-31kg,40=1.113×10-10?J-1。C2。m,电荷e=1.602×10-19?C>1055有人认为,中子是相距为10-13?cm的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。1056作为近似,苯可以视为边长为0.28nm的二维方势阱,若把苯中电子看作在此二维势阱中运动的粒子,试计算苯中成键电子从基态跃迁到第一激发态的波长。1059函数<x>=2sin-3sin是不是一维势箱中粒子的一种可能状态?如果是,其能量有没有确定值<本征值>?如有,其值是多少?如果没有确定值,其平均值是多少?1060在长为l的一维势箱中运动的粒子,处于量子数为n的状态,求:<1>在箱的左端1/4区域内找到粒子的概率;<2>n为何值时,上述概率最大?<3>当n→∞时,此概率的极限是多少?<4><3>中说明了什么?1061状态111<x,y,z>=sinsinsin概率密度最大处的坐标是什么?状态321<x,y,z>概率密度最大处的坐标又是什么?1062函数<x>=sin+2sin是否是一维势箱中的一个可能状态?试讨论其能量值。1063根据驻波的条件,导出一维势箱中粒子的能量。1064求下列体系基态的多重性<2S+1>。<1>二维方势箱中的9个电子;<2>lx=2a,ly=a二维势箱中的10个电子;<3>三维方势箱中的11个电子。1065试计算长度为a的一维势箱中的粒子从n=2跃迁到n=3的能级时,德布罗意长的变化。1066在长度为100pm的一维势箱中有一个电子,问其从基态跃迁到第一激发态吸收的辐射波长是多少?在同样情况下13粒子吸收的波长是多少?<已知me=9.109×10-31kg,m=6.68×10-27?kg>1067试问一个处于二维势箱中的粒子第四个能级的简并度为多少?1068<1>写出一维简谐振子的薛定谔方程;<2>处于最低能量状态的简谐振子的波函数是0=<>1/4exp[-2x2/2]此处,=<42k/h2>1/4,试计算振子处在它的最低能级时的能量。<3>波函数在x取什么值时有最大值?计算最大值处2的数值。1069假定一个电子在长度为300pm的一维势阱中运动的基态能量为4?eV。作为近似把氢原子的电子看作是在一个边长为100pm的立方箱中运动。估计氢原子基态电子能量。1070一个质量为m的自由粒子,被局限在x=-a/2到x=a/2之间的直线上运动,求其相应的波函数和能量<在-a/2≤x≤a/2范围内,V=0>。1071已知一维势箱的长度为0.1nm,求:<1>n=1时箱中电子的deBroglie波长;<2>电子从n=2向n=1跃迁时辐射电磁波的波长;<3>n=3时箱中电子的动能。1072<1>写出一维势箱中粒子的能量表示式;<2>由上述能量表示式出发,求出px2的本征值谱<写出过程>;<3>写出一维势箱中运动粒子的波函数。<4>由上述波函数求力学量px的平均值、px2的本征值谱。1073在0-a间运动的一维势箱中粒子,证明它在a/4≤x≤a/2区域内出现的概率P=[1+]。当n→∞时,概率P怎样变?1074设一维势箱的长度为l,求处在n=2状态下的粒子,出现在左端1/3箱内的概率。1075双原子分子的振动,可近似看作是质量为=的一维谐振子,其势能为V=kx2/2,它的薛定谔方程是_____________________________。1076试证明一维势箱中粒子的波函数n=sin<>不是动量算符x的本征函数。另外,一维箱中粒子的能量算符是否可以与动量算符交换?1077试证明三维势箱中粒子的平均位置为<a/2,b/2,c/2>。1077试证明三维势箱中粒子的平均位置为<a/2,b/2,c/2>。1079以=exp[-x2]为变分函数,式中为变分参数,试用变分法求一维谐振子的基态能量和波函数。已知10801927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。欲使电子射线产生的衍射环纹与Cu的K线<波长为154pm的单色X射线>产生的衍射环纹相同,电子的能量应为___________________J。1081把苯分子看成边长为350pm的二维四方势箱,将6个电子分配到最低可进入的能级,计算能使电子上升到第一激发态的辐射的波长,把此结果和HMO法得到的值加以比较<实验值为-75×103?J·mol-1>。1082写出一个被束缚在半径为a的圆周上运动的、质量为m的粒子的薛定谔方程,求其解。1083一个以1.5×106?m·s-1速率运动的电子,其相应的波长是多少?<电子质量为9.1×10-31kg>1084微观体系的零点能是指____________________的能量。1085若用波函数来定义电子云,则电子云即为___________________。1086和i哪个是自轭算符<>1087电子的运动状态是不是一定要用量子力学来描述?<>1088测不准关系式是判别经典力学是否适用的标准,对吗?<>1089求函数f=对算符i的本征值。1090若电子在半径为r的圆周上运动,圆的周长必须等于电子波半波长的整数倍。<1>若将苯分子视为一个半径为r的圆,请给出苯分子中π电子运动所表现的波长;<2>试证明在轨道上运动的电子的动能:Ek=<n为量子数><3>当n=0时被认为是能量最低的轨道,设分子内电子的势能只与r有关<此时所有C原子上电子波的振辐及符号皆相同>,试说明6个电子分别填充在哪些轨道上<4>试求苯分子的最低紫外吸收光谱的波长<5>联苯分子的最低能量吸收和苯分子相比,如何变化?为什么?1091一个100W的钠蒸气灯发射波长为590?nm的黄光,计算每秒钟所发射的光子数目。1092一个在一维势箱中运动的电子,其最低跃迁频率是2.0×1014?s-1,求一维势箱的长度。1093一电子在长为600?pm的一维势箱中由能级n=5跃迁到n=4,所发射光子的波长是多少?1094求证:x是否是算符<-+x2>的本征函数?若是,本征值是多少?1095求波函数=所描述的粒子的动量平均值,运动区域为-∞≤x≤∞。1096求波函数=coskx所描述的粒子的动量平均值,运动区间为-∞≤x≤∞。1097将原子轨道=归一化。已知1098用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为200?kV,计算电子加速后运动时的波长。1099金属锌的临阈频率为8.065×1014?s-1,用波长为300?nm的紫外光照射锌板,计算该锌板发射出的光电子的最大速率。1100已经适应黑暗的人眼感觉510nm的光的绝对阈值在眼角膜表面处为11003.5×10-17J。它对应的光子数是:〔<A>9×104<B>90<C>270<D>27×1081101关于光电效应,下列叙述正确的是:<可多选>〔<A>光电流大小与入射光子能量成正比<B>光电流大小与入射光子频率成正比<C>光电流大小与入射光强度成正比<D>入射光子能量越大,则光电子的动能越大1102提出实物粒子也有波粒二象性的科学家是:〔<A>deBröglie<B>A.?Einstein<C>W.?Heisenberg<D>E.?Schrödinger1103计算下列各种情况下的deBröglie波长。<1>在电子显微镜中,被加速到1000?kV的电子;<2>在300K时,从核反应堆发射的热中子<取平均能量为kT/2><3>以速率为1.0?m·s-1运动的氩原子<摩尔质量39.948?g·mol-1><4>以速率为10-10?m·s-1运动的质量为1g的蜗牛。<1eV=1.60×10-19J,k=1.38×10-23?J·K-1>1104计算能量为100?eV的光子、自由电子、质量为300g小球的波长。<1eV=1.60×10-19?J,me=9.109×10-31?kg>1105钠D线<波长为589.0?nm和589.6?nm>和60Co的射线<能量分别为1.17?MeV和1.34?MeV>的光子质量各为多少?1106已知Ni的功函数为5.0?eV。<1>计算Ni的临阈频率和波长;<2>波长为400?nm的紫外光能否使金属Ni产生光电效应?1107已知K的功函数是2.2?eV,<1>计算K的临阈频率和波长;<2>波长为400nm的紫外光能否使金属K产生光电效应?<3>若能产生光电效应,计算发射电子的最大动能。1108微粒在间隔为1eV的二能级之间跃迁所产生的光谱线的波数应为:〔<A>4032?cm-1<B>8065?cm-1<C>16130?cm-1<D>2016?cm-1<1eV=1.602×10-19J>1109欲使中子的德布罗意波长达到154?pm,则它们的动能和动量各应是多少?1110计算下列粒子的德布罗意波长,并说明这些粒子是否能被观察到波动性。<1>弹丸的质量为10?g,直径为1?cm,运动速率为106?m·s-1<2>电子质量为9.10×10-28?g,直径为2.80×10-13?cm,运动速率为106?m·s-1<3>氢原子质量为1.6×10-24?g,直径约为7×10-9?cm,运动速率为103?m·s-1,若加速到106?m·s-1,结果如何?1111金属钠的逸出功为2.3eV,波长为589.0?nm的黄光能否从金属钠上打出电子?在金属钠上发生光电效应的临阈频率是多少?临阈波长是多少?1112试计算具有下列波长的光子能量和动量:<1>0.1m<微波><2>500?nm<可见光><3>20m<红外线><4>500?pm<X射线><5>300?nm<紫外光>1113计算氦原子在其平均速率运动的德布罗意波长,温度分别为300K,1K和10-6K。1114普朗克常数是自然界的一个基本常数,它的数值是:〔<A>6.02×10-23尔格<B>6.625×10-30尔格·秒<C>6.626×10-34焦耳·秒<D>1.38×10-16尔格·秒1116首先提出微观粒子的运动满足测不准原理的科学家是:〔 <A>薛定谔<B>狄拉克<C>海森堡<D>波恩1117根据测不准关系,说明束缚在0到a范围内活动的一维势箱粒子的零点能效应。1118下列哪几点是属于量子力学的基本假设<多重选择>:〔<A>电子自旋<保里原理><B>微观粒子运动的可测量的物理量可用线性厄米算符表征<C>描写微观粒子运动的波函数必须是正交归一化的<D>微观体系的力学量总是测不准的,所以满足测不准原理1119描述微观粒子体系运动的薛定谔方程是:〔<A>由经典的驻波方程推得<B>由光的电磁波方程推得<C>由经典的弦振动方程导出<D>量子力学的一个基本假设1120自旋相同的两个电子在空间同一点出现的概率为_________。1121试求=<2/>1/4exp<-2x2/2>在等于什么值时是线性谐振子的本征函数,其本征值是多少?1122对于一个在特定的一维箱中的电子,观察到的最低跃迁频率为4.0×1014?s-1,求箱子的长度。1123氢分子在一维势箱中运动,势箱长度l=100?nm,计算量子数为n时的deBroglie波长以及n=1和n=2时氢分子在箱中49?nm到51?nm之间出现的概率,确定这两个状态的节面数、节面位置和概率密度最大处的位置。1124求解一维势箱中粒子的薛定谔方程〔x=E<x>1125质量为m的粒子在边长为l的立方势箱中运动,计算其第四个能级和第六个能级的能量和简并度。1126在共轭体系中将电子运动简化为一维势箱模型,势箱长度约为1.30nm,估算电子跃迁时所吸收的波长,并与实验值510nm比较。维生素A的结构如下:它在332?nm处有一强吸收峰,也是长波方向第一个峰,试估算一维势箱的长度l。一维势箱中一粒子的波函数n<x>=<2/l>1/2sin<nx/l>是下列哪些算符的本征函数,并求出相应的本征值。〔A〔B〔C〔D=1129试证明实函数2<>=<1/>1/2cos2和2’<>=<2/>1/2sin2cos都是方程[+4]<>=0的解。1130证明函数x+iy,x-iy和z都是角动量算符的本征函数,相应的本征值是多少?1131波函数具有节面正是微粒运动的波动性的表现。若把一维势箱粒子的运动看作是在直线上的驻波,请由驻波条件导出一维箱中粒子的能级公式,并解释为什么波函数的节面愈多其对应的能级愈高。1132设氢分子振动振幅为1×10-9?cm,速率为103?m·s-1,转动范围约1×10-8?cm,其动量约为振动的1/10左右,试由测不准关系估计分子的振动和转动能量是否量子化。1133①丁二烯和②维生素A分别为无色和橘黄色,如何用自由电子模型定性解释。①②已知丁二烯碳碳键长为1.35×10-10?nm<平均值>,维生素A中共轭体系的总长度为1.05?nm<实验值>。1134电子具有波动性,为什么电子显像管中电子却能正确地进行扫描?<假设显像管中电子的加速电压为1000?V>1135照射到1m2地球表面的太阳光子数很少超过每小时1mol,如果吸收光的波长=400?nm,试问太阳能发电机每小时每平方米从太阳获得最大能量是多少?如转化率为20%,试问对一个1000?MW的电站需要多大的采光面积?1136根据测不准关系,试说明具有动能为50?eV的电子通过周期为10-6?m的光栅能否产生衍射现象?1137CO2激光器给出一功率为1kW、波长为10.6m的红外光束,它每秒发射的光子是多少?若输出的光子全被1dm3水所吸收,它将水温从20°C升高到沸点需多少时间?1138欲使电子射线与中子束产生的衍射环纹与CuK线<波长154?pm的单色X射线>产生的衍射环纹相同,电子与中子的动能应各为多少?1139氯化钠晶体中有一些负离子空穴,每个空穴束缚一个电子,可将这些电子看成是束缚于边长为0.1?nm的方箱中。试计算室温下被这些电子吸收的电磁波的最大波长,并指出它在什么样的电磁波范围。1140已知有2n个碳原子相互共轭的直链共轭烯烃的分子轨道能量可近似用一维势阱的能级公式表示为Ek=k=1,2,…,2n其中,m是电子质量,r是相邻碳原子之间的距离,k是能级序号。试证明它的电子光谱第一吸收带<即电子基态到第一激发态的激发跃迁>波长与n成线性关系。假定一个粒子在台阶式势阱中运动,势阱宽度为l,而此台阶位于l/2~l之间,11420和1是线性谐振子的基态和第一激发态正交归一化的能量本征函数,令A0<x>+B1<x>是某瞬时振子波函数,A,B是实数,证明波函数的平均值一般不为零。A和B取何值时,x的平均值最大和最小。1144<1>计算动能为1eV的电子穿透高度为2?eV、宽度为1nm的势垒的概率;<2>此种电子克服1eV势垒的经典概率为5×10-12,比较两种概率可得出什么结论?1146已知算符具有下列形式:<1><2>+x试求2算符的具体表达式。1147已知是厄米算符,试证明-<a>也是厄米算符<式中,<a>是a的平均值,为实数>。1149证明同一个厄米算符的、属于不同本征值的本征函数相互正交。1150证明厄米算符的本征值是实数。1151试证明本征函数的线性组合不一定是原算符的本征函数,并讨论在什么条下才能是原算符的本征函数。1152设=∑cnn,其中n是算符属于本征值qn的本征函数,证明:<q>=∑|cn|2qn1153设i是的本征函数,相应的本征值为qi,试证明i是算符属于本征值qin的本征函数。1154下列算符是否可以对易:<1>和<2>和<3>=·和<4>和1155已知和是厄米算符,证明<+>和2也是厄米算符。1156若和为两个线性算符,已知-=1,证明:-=n1157对于立方箱中的粒子,考虑E<15h2/<8ml2>的能量范围。<1>在此范围内有多少个态?<2>在此范围内有多少个能级?1158为了研究原子或分子的电离能,常用激发态He原子发射的波长为58.4?nm的光子:He<1s12p1>─→He<1s2><1>计算58.4?nm光的频率<单位:cm-1>;<2>光子的能量以eV为单位是多少?以J为单位是多少?<3>氩原子的电离能是15.759?eV,用58.4?nm波长的光子打在氩原子上,逸出电子的动能是多大?1159由测不准关系E=h/2,求线宽为:<1>0.1cm-1,<2>1cm-1,<3>100?MHz的态的寿命。1160链型共轭分子CH2CHCHCHCHCHCHCH2在长波方向460?nm处出现第一个强吸收峰,试按一维势箱模型估算该分子的长度。1161说明下列各函数是,2,z三个算符中哪个的本征函数?2pz,2px和2p11162"波函数本身是连续的,由它推求的体系力学量也是连续的。"是否正确,为什么?1163一子弹运动速率为300m·s-1,假设其位置的不确定度为4.4×10-31m,速率不确定度为0.01%×300m·s-1,根据测不准关系式,求该子弹的质量。1164一维势箱中运动的一个粒子,其波函数为,a为势箱的长度,试问当粒子处于n=1或n=2的状态时,在0~a/4区间发现粒子的概率是否一样大,若不一样,n取几时更大一些,请通过计算说明。1165是否是算符的本征函数,若是,本征值是多少?1166对在边长为L的三维立方箱中的11个电子,请画出其基态电子排布图,并指出多重态数目。1167对在二维方势箱中的9个电子,画出其基态电子排布图。1168下列休克尔分子轨道中哪个是归一化的?若不是归一化的,请给出归一化系数。〔原子轨道是已归一化的1169将在三维空间中运动的粒子的波函数归一化。积分公式1170将在区间[-a,a]运动的粒子的波函数〔K为常数归一化。1171将描述在三维空间运动的粒子的波函数归一化。积分公式1172运动在区间〔-∞,∞的粒子,处于状态,求动量Px的平均值。1173一运动在区间〔-∞,∞的粒子,处于波函数所描述的状态,求动量Px的平均值。1174求由波函数所描述的、在区间〔-∞,∞运动的粒子动量Px的平均值。1175将描述在一球面上运动的粒子〔刚性转子的波函数归一化。1176将描述在一球面上运动的粒子〔刚性转子的波函数归一化。1177将被束缚在一球面上运动的粒子〔刚性转子的波函数归一化。1178写出动量Px的算符。1179证明:宇称算符的本征函数非奇即偶。1180考虑以下体系:<a>一个自由电子;<b>在一维势箱中的8个电子。哪个体系具有单基态?哪个体系具有多重基态?多重性如何?1181边长为L=84pm的一维势箱中的6个电子,计算其基态总能量。1182用波长2.790×105pm和2.450×105pm的光照射金属表面,当光电流被降到0时,电位值分别为0.66V和1.26V,试计算Planck常数。1183若氢原子处于所描述的状态,求其能量平均值。〔已知:及都是归一化的,平均值用R表示。1184指出下列论述是哪个科学家的功绩:<1>证明了光具有波粒二象性;<2>提出了实物微粒具有波粒二象性;<3>提出了微观粒子受测不准关系的限制;<4>提出了实物微粒的运动规律-Schrodinger方程;<5>提出实物微粒波是物质波、概率波。1185是否是算符的本征函数,若是,本征值是多少?1186长链分子中的电子可视为一维箱中粒子,设分子长为1nm,求下列两能级间的能量差。⑴n1=3,n2=2;⑵n1=4,n2=3。1187有一粒子在边长为a的一维势箱中运动。<1>计算当n=2时,粒子出现在0≤x≤a/4区域中的概率;<2>根据一维势箱的图,说明0≤x≤a/4区域中的概率。1188一个电子处于Lx=3l,Ly=l的二维势箱中运动,计算其轨道能量〔以h2/72ml2为单位,并画出最低的三个能级及所对应的量子数。1189在边长为a的一维势箱中运动的粒子,当n=3时,粒子出现在0≤x≤a/3区域中的几率是多少?〔根据一维势箱中运动的粒子的概率密度图1190氢原子处于波函数所描述的状态,角动量M2为多少?角动量在z方向分量Mz有无确定值?若无,平均值是多少?若有,是多少?1191设LiH分子的最高占据轨道为,若电子出现在二个原子轨道上的概率比为9:1,问各为何值?<已知为归一化的波函数,且>1192一质量为m的粒子在区间[a,b]上运动,求该粒子处于归一化波函数所描述的运动状态时能量的平均值。1193质量为0.05kg的子弹,运动速率为300m·s-1,假设其位置的不确定度为4.4×10-31m,试计算速率的不确定度为原来运动速率的百分数。1194证明描述在一球面上运动的粒子〔刚性转子的波函数是在三维空间中运动的自由粒子〔势能V=0的薛定谔方程的解,并求其能量和角动量。已知。1195一维箱中的粒子处于第一激发态,若将箱长分成等长的三段,求粒子出现在各段的概率。1196一维箱中的粒子,当处于n=1,2,3状态时,出现在区间0≤x≤a/3内的几率各是多少?1197一维箱中的粒子,当处于n=1,2,3状态时,出现在区间a/3≤x≤2a/3内的几率各是多少?1198一粒子在长为a的一维箱中运动,若将a分成等长的三段,求粒子处于基态时出现在各段的概率。1199验证描述在一球面上运动的粒子〔刚性转子的波函数是角动量平方算符的本征函数,并求粒子处于该状态时角动量的大小。已知。1200证明描述在一球面上运动的粒子〔刚性转子的波函数是三维空间中运动的自由粒子〔势能V=0的薛定谔方程的解,并求粒子的能量。已知。1201证明描述在一球面上运动的粒子〔刚性转子的波函数是在三维空间中运动的自由粒子〔势能V=0的薛定谔方程的解,并求粒子的能量。已知。1202证明波函数是角动量平方的本征函数,并求粒子的角动量。已知角动量平方算符。1203一质量为m的粒子在区间[a,b]上运动,求其处于状态〔注意,未归一化时坐标x的平均值。1204下列函数中⑴sinxcosx⑵cos2x⑶sin2x-cos2x哪些是d/dx的本征函数,本征值是多少,哪些是d2/dx2的本征函数,本征值是多少?1205函数sinxcosx,sin2x,中哪些是d2/dx2的本征函数,本征值是多少?1206直链共轭多烯中,π电子可视为在一维势箱中运动的粒子,实际测得π电子由最高填充能级向最低空能级跃迁时吸收光谱波长为30.16×104pm,试求该一维势箱的长度。1207下列哪些函数是算符d/dx的本征函数,本征值是多少?⑴eikx⑵k⑶kx⑷lnx1208证明是算符的本征函数,并求其本征值。1209电子在长度为a的一维势箱中运动,当电子从跃迁到的状态,其德布罗意波长的变化是多少?1210一质量为m的粒子,在长为a的一维箱中运动,若将箱长均匀分成三段,当该粒子处于第二激发态时,粒子出现在各段的概率之比为多少?1211若氢原子基态到第一激发态跃迁时,吸收光的波数为8.22×104cm-1,求跃迁时所需能量。1212一质量为m的粒子,在长为a的一维势箱中运动,根据其几率密度分布图,当粒子处于时〔,出现在a/8≤x≤3a/8内的概率是多少?1213根据一维势箱中粒子的概率密度分布图,指出在0≤x≤a区间运动的粒子处于n=5,状态时,出现在0.13a≤x≤0.33a内的概率。1214设粒子位置的不确定度等于其德布罗意波长,则此粒子的速率的不确定度与粒子运动速率的关系如何。1215计算德布罗意波长为70.8pm的电子所具有的动能。1216证明在三维空间中运动的粒子,当处于本征态时,角动量大小具有确定值,并求角动量。已知角动量平方算符。1217证明描述在一球面上运动的粒子〔刚性转子的波函数是在三维空间中运动的自由粒子〔势能V=0的薛定谔方程的解,并求其能量。已知。1218一质量为m的粒子,在区间[a,b]运动,处于状态,试将归一化。1219计算波长为6.626的光子和自由电子的能量比。1220已知一函数f<x>=2e2x,问它是否是的本征函数?相应的本征值是多少?1221计算德布罗意波长为70.8pm的电子所具有的动量。1222写出联系实物微粒波动性和粒子性的关系式。《结构化学》第一章习题答案1001<D>1002E=hp=h/1003小1004电子概率密度1005T==J=2.410×10-17J1006T=h-h0=-T=<1/2>mv2v==6.03×105m·s-11007<1/2>mv2=h-W0=hc/-W0=2.06×10-19Jv=6.73×105m/s1008=1.226×10-9m/=1.226×10-11m1009<B>1010A,B两步都是对的,A中v是自由粒子的运动速率,它不等于实物波的传播速率u,C中用了=v/,这就错了。因为=u/。又D中E=h是粒子的总能量,E中E=mv2仅为v<<c时粒子的动能部分,两个能量是不等的。所以C,E都错。1011x·px≥微观物体的坐标和动量不能同时测准,其不确定度的乘积不小于。1013E=/t=<h>=h=1/<2t>=1/<2×10-9>=1.59×108s-1=/c=1.59×108s-1/3×1010cm·s-1=5.3×10-3cm-11014不对1015<1>单值的。<2>连续的,一级微商也连续。<3>平方可积的,即有限的。1016不对。1017<a>∫id=0,i≠j<b>∫id=11018电子1出现在x1,y1,z1,同时电子2出现在x2,y2,z2处的概率密度1020不对。1021<A>,<B>,<C>,<E>1022<A>,<B>,<D>可对易1023<1>B,C<2>A,B,C<3>B,C1024和可对易1025<A>,<D>1026-i·<x-y>1027x=-i-i<Ne-ix>=-<Ne-ix>本征值为-1029<1>是2属于同一本征值2<>2的本征函数的线性组合,所以,是2的本征函数,其本征值亦为2<>2<2>是z属于本征值h和0的本征函数的线性组合,它不是z的本征函数,其Mz无确定值,其平均值为<Mz>=1030=px=pxln=xpx+A=cexp[2ixpx/h]1031不对1032∵1=E1,2=E2=<c11+c22>=c11+c22=c11+c22=c1E1+c2E2=E1033=1-2=0[1-2]=0[1-2]=常数1034<1>Schrödinger方程为-=E<>E=,<>=eimm=0,±1,±2,...<2><>=01035<>=exp[±i]E==0,1,2,...1036A1037D10381039<1>B<2>A1041<C>1042<E>1043<B>1044势能V=0动能En==mv2=kTn2=n=1045〔1.=+=〔2.nxny<以为单位>41202220121731132181151046<1>=sinn=1,2,3,…<2>E=;<3>1/2<4>增长<5>=sinsinE=+1047<1>211<x,y,z>=sinxsinysinz<2><a/4,a/2,a/2><3a/4,a/2,a/2><3>610483,41049<非>1050E=共有17个状态,这些状态分属6个能级。1051=-+x2=E=E=h1052到5所需能量为最低激发能。1053P=sin2<>dx=0.5+=0.8181054一维势箱E1==6.03×10-8J静电势能V=-=-2.3×10-13J由于动能大于势能,体系总能量大于零,不能稳定存在。发出h≈E1的射线<射线>。1055库仑吸引势能大大地小于电子的动能,这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。1056E=[<22+22>-<12+22>〕====86.2nm1059<1>.该函数是一维箱中粒子的一种可能状态,因sin及sin是方程的解,其任意线性组合也是体系可能存在的状态。<2>.其能量没有确定值,因该状态函数不是能量算符的本征函数。<3>.<E>=1060<1>n=sinP1/4=∫dx=-sin<2>n=3,P1/4,max=+<3>P1/4=<-sin>=<4><3>说明随着粒子能量的增加,粒子在箱内的分布趋于平均化。1061111<x,y,z>概率密度最大处的坐标为x=a/2,y=b/2,z=c/2321<x,y,z>状态概率密度最大处的坐标为:<a/6,b/4,c/2>,<a/6,3b/4,c/2>,<a/2,b/4,c/2>,<a/2,3b/4,c/2>,<5a/6,b/4,c/2>,<5a/6,3b/4,c/2>1062是;<E>=+=+=1063要使波能稳定存在,其波长必须满足驻波条件:n=l,n=1,2,…考虑到德布罗意关系式,从上式可得:p==在一维势箱中,势能V<x>=0,粒子的能量就是动能E==1064<1>2<2>3<3>41065=2-3=-=a-a=a1066一维势箱En=E=E2-E1=-===对电子=11.00nm对粒子=8.07×104nm106721068<1>[-+kx2]=E<2>E===h<3>x=0时,=0,有最大值0<0>=<>1/4最大值处x=002=<>1/2=1069已知势箱长度之比为300pm:100pm=3:1假设==4eVh2/<8m>=432eVEH=[·]3=4×32×3=108eV1070=cosxE=,n=1,3,5,…=sinxE=,n=2,4,6,…1071<1>=2×10-10m<2>=1.1×10-8m<3>T=5.43×10-17J1072〔1.E=〔2.〔3.〔4.<px>=01073当时,107410751076以作用于不等于常数乘,即可证得。可和交换.1077同理<y>=b/2<z>=c/2所以,粒子的平均位置为<a/2,b/2,c/2>1078一维箱长l=<k-1>a,En=k=偶数,k=奇数,1079E=为使平方可积,取T==1.016×10-17J10811101<C>,<D>1102<A>1103<1><2><3><4>1104光子波长自由电子的波长质量为300g的小球的波长1105<589.0nm><589.6nm>1106<1><2>不能1107<1><2>可以<3>1108<B>1109中子:1110不能观测到波动性能观测到波动性能观测到波动性加速后不能观测到波动性1111不能1112<1><2><3><4><5>111311151114<C>1116<C>1117或1118<A>,<B>1119<D>??E=L=8Rc-c=1120pm所以最低激发能为E=E5-E4==4.323×10-19J=2.698eVE=h=hc/==459.8nm460nm为蓝光,即该分子吸收蓝色光。在白光中表现为红色。11211122观察到的最低跃迁频率对应于n=1向n=2的跃迁。故箱子长度为8.27×10-10m1123势箱中故=2l/n=<200/n>nmn=1P1=0.0400n=2P2=0.0001n=1时无节面,概率密度最大在50nm处。n=2时节面数=n-1=1,节面在50nm处,概率密度最大在25nm和75nm处。1124En=n2h2/<8ma2>n=1,2,3,...1125立方势箱的能量表达式为nxnynzE<以为单位>g<简并度>111311211126321112222193212113131113311222121123132321146312231321第四个能级能量为<11h2>/<8ml2>,简并度为3。第六个能级能量为<7h2>/<4ml2>,简并度为6。1126估算的吸收光的波长506.4nm与实验值相接近。1127l=1.05nm1128<A>.不是<B>.是,本征值为n2h2/<4l2><C>.不是<D>.是,本征值为n2h2/<8ml2>1129将代入方程说明是方程的解。将代入方程说明也是方程的解。1130`故x+iy是本征函数,本征值为故x-iy是本征函数,本征值为故z是本征函数,本征值为01131n=1,2,3,…节面愈多,波长愈短,频率愈高,能量亦愈高。1132是量子化的,因为对振动x≈1×10-9cm,而p=mv=[<2×10-3>/<6.02×1023>]×103=J·m-1·s-1由测不准关系,p≈h/x=<6.626×>/<1×10-11>=6.626×10-23J·m-1·s-1p~p,所以测不准原理起作用,能量是量子化的.对转动x≈1×10-8cm=1×10-10m=0.1×p=3.32×J·m-1·s-1=6.626×J·m-1·s-1转动能量也是量子化的。1133丁二烯吸收发生在紫外区,所以是无色的,维生素A吸收在可见部分的高能区见到绿和红的混合。1134x=3.883×10-10m,与荧光屏电子显像管大小相比,可忽略。1135太阳能发电机每小时每平方米从太阳获得最大能量为3×105J。电站需要采光面积为6×107m2。1136不能。1137每秒发射5.33×个光子.要5分35秒<335秒>。1138电子能量:T=1.01×10-17J中子能量:T=5.54×J1139≈11nm在X-射线范围。1140第一吸收带是由HOMO到LUMO跃迁产生。对本题HOMOk=n;LUMOk=n+1;所以即114121201142A=B=1/时,<x>最大。A=-B=1/时,<x>最小。1144<1>k1=<2/h><2mE>1/2,k2=<2/h>[2m<V-E>]1/2,<2>=[<V-E>/E]1/2=1,<2>对于此电子迁移,隧道效应是主要的。1145E=E0+1/211461147设u和v是两个任意函数,由此得证1149设u1,u2,...,,...是算符的分别属于本征值,...的本征函数,则有可得根据的厄米性,从上式可得1150按厄米算符的定义,有同时下列本征方程成立:代入上式,得:由此可得故必为实数。1151设:<1>.和是的本征函数,相应的本征值为E1和E2。<2>.证:只有当E1=E2时,才有即,才是原算符的本征函数。11521153由此得证1154<1>.可以;<2>.可以;<3>.不可以<4>.可以1155<1>.∫u*<>vd=∫u*vd51+∫u*vd=∫<u>*vd+∫<u>*vd=∫[<u>*+<u>*]vd=∫[<u>+<u>]*vd=∫[<>]*vd由此得证<2>.∫u*v=∫u*<v>=∫<u>*<v>=∫<u>*v=∫<u>*v

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论