




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知函数,则等于A.2 B.4C.1 D.2.已知,则=A.2 B.C. D.13.已知,则的值为()A.-4 B.4C.-8 D.84.定义在上的奇函数,满足,则()A. B.C.0 D.15.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.86.已知集合,为自然数集,则下列结论正确的是()A. B.C. D.7.已知函数的图象如图所示,则函数的图象为A.B.C.D.8.已知,,且,均为锐角,那么()A. B.或-1C.1 D.9.设,,,则的大小关系是()A B.C. D.10.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}11.命题“,”的否定为()A., B.,C., D.,12.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”二、填空题(本大题共4小题,共20分)13.已知,若,则的最小值是___________.14._____15.由直线上的任意一个点向圆引切线,则切线长的最小值为________.16.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______三、解答题(本大题共6小题,共70分)17.已知函数是定义在区间上的奇函数,且.(1)求函数的解析式;(2)判断函数在区间上的单调性,并用函数单调性的定义证明.18.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由19.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表:t50110250Q150108150(1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并说明理由;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.20.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点21.设函数是定义域为的任意函数.(1)求证:函数是奇函数,是偶函数;(2)如果,试求(1)中的和的表达式.22.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】由题设有,所以,选A2、D【解析】.故选.3、C【解析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可求值.【详解】由题意知:,即,∴,而.故选:C.【点睛】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.4、D【解析】由得出,再结合周期性得出函数值.【详解】,,即,,则故选:D5、B【解析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.6、C【解析】由题设可得,结合集合与集合、元素与集合的关系判断各选项的正误即可.【详解】由题设,,而为自然数集,则,且,所以,,故A、B、D错误,C正确.故选:C7、A【解析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【详解】解:通过函数的图象可知:,当时,可得,即.函数是递增函数;排除C,D.当时,可得,,,故选A【点睛】本题考查了指数函数的图象和性质,属于基础题.8、A【解析】首先确定角,接着求,,最后根据展开求值即可.【详解】因为,均为锐角,所以,所以,,所以.故选:A.【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好9、C【解析】详解】,即,选.10、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解11、C【解析】由全称命题的否定是特称命题可得答案.【详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.12、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.二、填空题(本大题共4小题,共20分)13、16【解析】乘1后借助已知展开,然后由基本不等式可得.【详解】因为,所以当且仅当,,即时,取“=”号,所以的最小值为16.故答案为:1614、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:615、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.16、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)增函数,证明见解析【解析】(1)又函数为奇函数可得,结合求得,即可得出答案;(2)令,利用作差法判断的大小,即可得出结论.【小问1详解】解:因为函数是定义在区间上的奇函数,所以,即,所以,又,所以,所以;【小问2详解】解:增函数,证明如下:令,则,因为,所以,,所以,即,所以函数在区间上递增.18、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.19、(1)选用二次函数Q=at2+bt+c进行描述,理由见解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的数据和函数的单调性得出应选函数,再代入数据可得芦荟种植成本Q与上市时间t的变化关系的函数.(2)由二次函数的性质可以得出芦荟种植成本最低成本.【详解】(1)由所提供的数据可知,刻画芦荟种植成本Q与上市时间t的变化关系的函数不可能是常数函数,若用函数Q=at+b,Q=a·bt,Q=alogbt中的任意一个来反映时都应有a≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入函数Q=at2+bt+c,可得:,解得.所以,刻画芦荟种植成本Q与上市时间t变化关系的函数.(2)当时,芦荟种植成本最低为(元/10kg).【点睛】本题考查求回归方程,以及回归方程的应用,属于中档题.20、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.21、(1)是奇函数,是偶函数.(2)【解析】(1)计算,可得证(2)将f(x)代入(1)中表达式化简即可求得试题解析:(1)∵的定义域为,∴和的定义域都为.∵,∴.∴是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度知识产权国际布局与合作合同
- 2025年度航空航天设备工装装修施工保密合同
- 二零二五年度星级酒店餐饮部食堂承包经营合同
- 2025年度酒水行业定制化营销合作采购合同
- 2025年度科技园区内企业间孵化资金借款合同
- 2025年度民间借贷合同范文:人工智能产业资金借贷合作协议
- 农村水电设施维护与农村电气化发展合作协议(2025年度)
- 石墨烯复合材料性能与应用的双赢
- 砖厂安全风险评估与标准化防范措施
- 2025至2030年中国皮革机配件数据监测研究报告
- 学校2025年春季学期学校安全工作计划+行事历
- 广西壮族自治区柳州市2025年中考物理模拟考试卷三套附答案
- 2024中国糖果、巧克力制造市场前景及投资研究报告
- 第11课《山地回忆》说课稿 2024-2025学年统编版语文七年级下册
- 2023年H3CNE题库附答案
- 2024年首都医科大学附属北京安定医院招聘笔试真题
- 老旧小区改造项目施工组织设计方案
- 【招商手册】杭州ICON CENTER 社交娱乐中心年轻人潮流消费创新实验
- AI一体化智慧校园建设方案中学版
- 2025年国家税务总局辽宁省税务局系统招聘事业单位工作人员管理单位笔试遴选500模拟题附带答案详解
- 2024年思想道德与政治考试题库 (单选、多选)
评论
0/150
提交评论