上海市虹口中学2023届数学高一上期末考试试题含解析_第1页
上海市虹口中学2023届数学高一上期末考试试题含解析_第2页
上海市虹口中学2023届数学高一上期末考试试题含解析_第3页
上海市虹口中学2023届数学高一上期末考试试题含解析_第4页
上海市虹口中学2023届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“为第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.3.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度4.函数的图象可能是A. B.C. D.5.若在上单调递减,则的取值范围是().A. B.C. D.6.在平行四边形中,与相交于点,是线段中点,的延长线交于点,若,则等于()A. B.C. D.7.函数的零点所在的区间为A B.C. D.8.下列函数中,值域是的是A. B.C. D.9.中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵.那么前3个儿子分到的绵的总数是()A.89斤 B.116斤C.189斤 D.246斤10.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的偶函数满足:当时,,则______12.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.13.已知,若,则_______;若,则实数的取值范围是__________14.已知函数则的值为_______15.函数的图像恒过定点___________16.已知向量,,若,,,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数(1)求的值;(2)判断的单调性,并用定义证明;(3)解不等式18.已知,(1)求的值;(2)求的值.19.已知直线,无论为何实数,直线恒过一定点.(1)求点的坐标;(2)若直线过点,且与轴正半轴、轴正半轴围成的三角形面积为4,求直线的方程.20.旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.(1)写出每张飞机票价格元与旅行团人数之间的函数关系式;(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.21.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用辅助角公式及正弦函数的性质解三角形不等式,再根据集合的包含关系判断充分条件、必要条件即可;【详解】解:由,即,所以,,解得,,即,又第二象限角为,因为真包含于,所以“”是“为第二象限角”的必要不充分条件;故选:B2、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A3、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C4、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:5、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.6、A【解析】化简可得,再由及选项可得答案【详解】解:由题意得,,;、、三点共线,,结合选项可知,;故选:7、B【解析】根据零点的存在性定理,依次判断四个选项的区间中是否存在零点【详解】,,,由零点的存在性定理,函数在区间内有零点,选择B【点睛】用零点的存在性定理只能判断函数有零点,若要判断有几个零点需结合函数的单调性判断8、D【解析】分别求出各函数的值域,即可得到答案.【详解】选项中可等于零;选项中显然大于1;选项中,,值域不是;选项中,故.故选D.【点睛】本题考查函数的性质以及值域的求法.属基础题.9、D【解析】利用等差数列的前项和的公式即可求解.【详解】用表示8个儿子按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,所以,解之得所以,即前3个儿子分到的绵是246斤故选:D10、A【解析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征二、填空题:本大题共6小题,每小题5分,共30分。11、12【解析】根据偶函数定义,结合时的函数解析式,代值计算即可.【详解】因为是定义在上的偶函数,故可得,又当时,,故可得,综上所述:.故答案为:.12、①②③【解析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【点睛】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.13、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,14、【解析】首先计算,再求的值.【详解】,所以.故答案为:15、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.16、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调递减,证明见解析(3)【解析】(1)根据奇函数性质求解即可;(2)根据定义法严格证明单调性,注意式子正负的判断即可求解;(3)根据奇函数性质化简不等式得,再根据函数单调性得到,代入函数解不等式即可求解.【小问1详解】因为为奇函数且的定义域为,所以由奇函数性质得,解得,当时,,,即,符合题意.【小问2详解】在上单调递减,证明如下:由(1)知,,,时,,因为,所以,,所以,即在上单调递减【小问3详解】因为,所以,因为为奇函数,,所以,又因为在上单调递减,所以,即,所以,即,解得,即不等式的解集为18、(1)(2)【解析】(1)化简得到原式,代入数据得到答案.(2)变换得到,代入数据得到答案.【详解】(1).(2).【点睛】本题考查了利用齐次式计算函数值,变换是解题的关键.19、(1)(2)【解析】(1)将直线变形为,令,即可解出定点坐标;(2)可设直线为,根据题意可得到面积为,进而解出参数值解析:(1)将直线的方程整理为:,解方程组,得所以定点的坐标为.(2)由题意直线的斜率存在,设为,于是,即,令,得;令,得,于是.解得.所以直线的方程为,即.20、(1);(2)当旅游团人数为或时,旅行社可获得最大利润为元.【解析】(1)讨论和两种情况,分别计算得到答案.(2),分别计算最值得到答案.【详解】(1)依题意得,当时,.当时,;∴(2)设利润为,则.当且时,,当且时,,其对称轴为因为,所以当或时,.故当旅游团人数为或时,旅行社可获得最大利润为元.【点睛】本题考查了分段函数的应用,意在考查学生的应用能力和计算能力.21、(1)||=5;;(2);(3).【解析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论