版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体AC1中,AA1与B1D所成角的余弦值是()A. B.C. D.2.已知为锐角,为钝角,,则()A. B.C. D.3.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.4.已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A.10 B.13C.15 D.205.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或6.函数(且)与函数在同一个坐标系内的图象可能是A. B.C. D.7.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.8.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.9.在空间给出下面四个命题(其中、为不同的两条直线),、为不同的两个平面)①②③④其中正确的命题个数有A.1个 B.2个C.3个 D.4个10.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______12.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________13.已知函数,那么_________.14.已知函数,若,则______.15.不等式对于任意的x,y∈R恒成立,则实数k的取值范围为________16.已知函数的图象恒过定点,若点也在函数的图象上,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数的最大值及取得最大值时的值;(2)若方程在上的解为,,求的值18.(1)计算:;(2)计算:19.已知.(1)若,求的值;(2)若,且,求的值.20.已知函数,函数为R上的奇函数,且.(1)求的解析式:(2)判断在区间上的单调性,并用定义给予证明:(3)若的定义域为时,求关于x的不等式的解集.21.已知(1)当时,求的值;(2)若的最小值为,求实数的值;(3)是否存在这样的实数,使不等式对所有都成立.若存在,求出的取值范围;若不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】画出图象如下图所示,直线与所成的角为,其余弦值为.故选A.2、C【解析】利用平方关系和两角和的余弦展开式计算可得答案.【详解】因为为锐角,为钝角,,所以,,则.故选:C.3、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性4、B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13故选B点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小5、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.6、C【解析】利用指数函数和二次函数的性质对各个选项一一进行判断可得答案.【详解】解:两个函数分别为指数函数和二次函数,其中二次函数的图象过点,故排除A,D;二次函数的对称轴为直线,当时,指数函数递减,,C符合题意;当时,指数函数递增,,B不合题意,故选C【点睛】本题通过对多个图象的选择考查指数函数、二次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.7、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.8、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D9、C【解析】:①若α,则,根据线面垂直的性质可知正确;②若,则;不正确,也可能是m在α内;错误;③若,则;据线面垂直的判定定理可知正确;④若,根据线面平行判定的定理可知正确得到①③④正确,故选C10、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.12、4、5、6【解析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力13、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:314、16或-2【解析】讨论和两种情况讨论,解方程,求的值.【详解】当时,,成立,当时,,成立,所以或.故答案为:或15、【解析】根据给定条件将命题转化为关于x的一元二次不等式恒成立,再利用关于y的不等式恒成立即可计算作答.【详解】因为对于任意的x,y∈R恒成立,于是得关于x的一元二次不等式对于任意的x,y∈R恒成立,因此,对于任意的y∈R恒成立,故有,解得,所以实数k的取值范围为.故答案为:16、【解析】根据对数过定点可求得,代入构造方程可求得结果.【详解】,,,解得:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时,函数取得最大值为;(2).【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值;(2)求出函数的对称轴,得到和的关系,利用诱导公式化简可得答案.【详解】(1),令,可得,对称轴为,开口向下,所以在上单调递增,所以当,即,时,,所以当时,函数取得最大值为;(2)令,可得,当时,是的对称轴,因为方程在上的解为,,,,且,所以,所以,所以,所以的值为.18、(1);(2).【解析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=319、(1)(2)【解析】(1)利用诱导公式求出,由已知得出,再由齐次式即可求解.(2)由题意可得,,再由两角和的正切公式即可求解.【小问1详解】由已知,,得所以【小问2详解】由,,可知,,∴.∵,∴.而,∴.∴,∴.20、(1);(2)单调递增.证明见解析;(3)【解析】(1)列方程组解得参数a、b,即可求得的解析式;(2)以函数单调性定义去证明即可;(3)依据奇函数在上单调递增,把不等式转化为整式不等式即可解决.【小问1详解】由题意可知,即,解之得,则,经检验,符合题意.【小问2详解】在区间上单调递增.设任意,且,则由,且,可得则,即故在区间上单调递增.【小问3详解】不等式可化为等价于,解之得故不等式的解集为21、(1)(2)或(3)存在,的取值范围为【解析】(1)先化简,再代入进行求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专用:煤仓租赁合同
- 2024互联网游戏开发公司与运营商分成协议
- 2024年度体育赛事LED计分屏采购合同
- 公益日活动小结(12篇)
- 2024年度EPS围挡施工及拆除合同
- 2024天然气运输环境影响评估协议
- 2024年度信息系统安全运维合同-PKISSL基础应用
- 2024年度物流仓储服务合作协议
- 2024年家禽养殖数字化管理系统建设合同
- 2024年幼儿园共建协议
- 教育信息化教学资源建设规划
- 上海市交大附中附属嘉定德富中学2024-2025学年九年级上学期期中考数学卷
- 屠宰场食品安全管理制度
- 部编版(2024秋)语文一年级上册 6 .影子课件
- 2024秋期国家开放大学专科《刑事诉讼法学》一平台在线形考(形考任务一至五)试题及答案
- 基于SICAS模型的区域农产品品牌直播营销策略研究
- 病例讨论英文
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 【课件】植物体的结构层次课件-2024-2025学年人教版生物七年级上册
- 24秋国家开放大学《0-3岁婴幼儿的保育与教育》期末大作业参考答案
- 相对湿度计算公式
评论
0/150
提交评论