




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知函数,则的()A.最小正周期,最大值为 B.最小正周期为,最大值为C.最小正周期为,最大值为 D.最小正周期为,最大值为2.若集合中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形3.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.4.当x越来越大时,下列函数中增长速度最快的是()A. B.C. D.5.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx6.已知角与角的终边关于直线对称,且,则等于()A. B.C. D.7.若,则的值为A. B.C.2 D.38.下列函数中,既是偶函数,又在区间上单调递增的函数是()A. B.C. D.9.函数(其中为自然对数的底数)的图象大致为()A. B.C. D.10.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.211.函数的图象如图所示,则在区间上的零点之和为()A. B.C. D.12.已知扇形的弧长是,面积是,则扇形的圆心角的弧度数是()A. B.C. D.或二、填空题(本大题共4小题,共20分)13.函数的最大值是,则实数的取值范围是___________14.已知函数有两个零点,则___________15.已知幂函数的图象过点(2,),则___________16.已知函数在上单调递减,则实数的取值范围是______三、解答题(本大题共6小题,共70分)17.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知(1)利用上述结论,证明:的图象关于成中心对称图形;(2)判断的单调性(无需证明),并解关于x的不等式18.已知向量=(3,2),=(-1,2),=(4,1)(1)若=m+n,求m,n的值;(2)若向量满足(-)(+),|-|=2,求的坐标.19.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.20.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围21.已知点,,.(1)若,求的值;(2)若,其中为坐标原点,求的值.22.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用辅助角公式化简得到,求出最小正周期和最大值.【详解】所以最小正周期为,最大值为2.故选:B2、D【解析】根据集合元素的互异性即可判断.【详解】由题可知,集合中的元素是的三边长,则,所以一定不是等腰三角形故选:D3、D【解析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.4、B【解析】根据函数的特点即可判断出增长速度.【详解】因为指数函数是几何级数增长,当x越来越大时,增长速度最快.故选:B5、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.6、A【解析】先在角终边取一点,利用角与角的终边关于直线对称写出对称点的坐标,即可求得,进而求得.【详解】由知角终边在第一或第二象限,在终边上取一点或,又角与角的终边关于直线对称,故角的终边必过点或,故,则.故选:A.7、A【解析】利用同角三角函数的基本关系,把要求值的式子化为,即可得到答案.【详解】由题意,因为,所以,故选A【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角恒等变换的公式,合理化简、运算是解答的关键,着重考查了运算与求解能力.8、D【解析】根据常见函数的单调性和奇偶性可直接判断出答案.【详解】是奇函数,不满足题意;的定义域为,是非奇非偶函数,不满足题意;是非奇非偶函数,不满足题意;是偶函数,且在区间上单调递增,满足题意;故选:D9、A【解析】由为偶函数,排除选项B、D,又,排除选项C,从而即可得答案.【详解】解:令,因为,且定义域为,所以为偶函数,所以排除选项B、D;又,所以排除选项C;故选:A.10、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.11、D【解析】先求出周期,确定,再由点确定,得函数解析式,然后可求出上的所有零点【详解】由题意,∴,又且,∴,∴由得,,,在内有:,它们的和为故选:D12、C【解析】根据扇形面积公式,求出扇形的半径,再由弧长公式,即可求出结论.【详解】因为扇形的弧长为4,面积为2,设扇形的半径为,则,解得,则扇形的圆心角的弧度数为.故选:C.【点睛】本题考查扇形面积和弧长公式应用,属于基础题.二、填空题(本大题共4小题,共20分)13、[-1,0]【解析】函数,当时,函数有最大值,又因为,所以,故实数的取值范围是14、2【解析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:215、【解析】由幂函数所过的点求的解析式,进而求即可.【详解】由题设,若,则,可得,∴,故.故答案为:16、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.三、解答题(本大题共6小题,共70分)17、(1)证明见解析(2)为单调递减函数,不等式的解集见解析.【解析】(1)利用已知条件令,求出的解析式,利用奇函数的定义判断为奇函数,即可得证;(2)由(1)得,原不等式变成,利用函数单调性化为含有参数的一元二次不等式,求解即可.【小问1详解】证明:∵,令,∴,即,又∵,∴为奇函数,有题意可知,的图象关于成中心对称图形;【小问2详解】易知函数为单调递增函数,且对于恒成立,则函数在上为单调递减函数,由(1)知,的图象关于成中心对称图形,即,不等式得:,即,则,整理得,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.18、(1);(2)=(2,3)或=(6,5).【解析】(1)利用向量线性坐标运算即可求解.(2)根据向量共线的坐标表示以及向量模的坐标表示列方程组即可求解.【详解】解:(1)若=m+n,则(4,1)=m(3,2)+n(-1,2)即所以(2)设=(x,y),则-=(x-4,y-1),+=(2,4)(-)(+),|-|=2解得或所以=(2,-3)或=(6,5)19、(1)f(x)=;(2).【解析】(1)由可得,由此方程的解唯一,可得,可求出,再由f(2)=1,可求出的值,进而可求出函数f(x)的解析式;(2)由题意可得,然后求出的最小值,可得的最大值【详解】解:(1)由,得,即.因为方程有唯一解,所以,即,因为f(2)=1,所以=1,所以,所以=;(2)因为,所以,而,当,即时,取得最小值,此时取得最大值.20、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.21、(1);(2).【解析】(1)因为,,,所以,.因为所以,化简即可得的值;(2)因为,,所以,因为,所以,平方即可求得的值.试题解析:(1)因为,,,所以,.因为所以.化简得因为(若,则,上式不成立).所以.(2)因为,,所以,因,所以,所以,所以,,因为,所以,故.22、【解析】分析:直接利用共线向量的性质、向量加法与减法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年微生物检验技师考试诊断试题及答案
- 2024年项目管理考试重点分析试题及答案
- 项目管理协同工作的要素分析试题及答案
- 2025年注会考试各科试题及答案
- 突破瓶颈的证券从业资格试题及答案
- 2024年项目管理的科研与创新结合试题及答案
- 风险管理在财务中的角色试题及答案
- 2024年微生物教育的发展改革试题及答案
- 2024年项目管理资格考试知识试题及答案
- 2025年注会学员必做的经典题目及试题及答案
- 2025年中考地理二轮复习:中考地理常见易混易错知识点与练习题(含答案)
- 硫酸使用安全培训
- 政务服务窗口培训课件
- 2025年湖南湘潭高新集团有限公司招聘笔试参考题库含答案解析
- 2024年02月福建2024年兴业银行福州分行金融科技人才招考笔试历年参考题库附带答案详解
- 住宅小区绿化苗木种植协议
- MPE720软件指令基础
- 《3-6岁儿童学习与发展指南》艺术领域 -5-6岁
- 液压知识培训课件
- 冷链物流建设施工方案
- 《消防安全操作规程》
评论
0/150
提交评论