上海市复兴中学2023届高一上数学期末达标检测模拟试题含解析_第1页
上海市复兴中学2023届高一上数学期末达标检测模拟试题含解析_第2页
上海市复兴中学2023届高一上数学期末达标检测模拟试题含解析_第3页
上海市复兴中学2023届高一上数学期末达标检测模拟试题含解析_第4页
上海市复兴中学2023届高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知方程的两根分别为、,且、,则A. B.或C.或 D.2.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6003.若函数满足,则A. B.C. D.4.已知,则函数()A. B.C. D.5.设,,,则的大小顺序是A. B.C. D.6.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.7.设a,b,c均为正数,且,,,则a,b,c的大小关系是()A. B.C. D.8.要得到函数y=sin(2x+)的图像,只需把函数y=sin2x的图像A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位9.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(﹣2)=()A.﹣3 B.﹣1C.1 D.310.函数在单调递增,且为奇函数,若,则满足的的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限的角,且,则;④直线是函数的一条对称轴;⑤函数的图像关于点成对称中心图形.其中正确命题序号是__________.12.函数一段图象如图所示则的解析式为______13.tan22°+tan23°+tan22°tan23°=_______14.若函数在上单调递减,则实数a的取值范围为___________.15.已知,均为正数,且,则的最大值为____,的最小值为____.16.已知函数在上的最大值为2,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(Ⅰ)当时,若关于的方程有且只有两个不同的实根,求实数的取值范围;(Ⅱ)对任意时,不等式恒成立,求的值.18.已知函数,()求函数的单调区间;()若函数在上有两个零点,求实数的取值范围19.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m的方程.20.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.21.对于在区间上有意义的函数,若满足对任意的,,有恒成立,则称在上是“友好”的,否则就称在上是“不友好”的.现有函数.(1)当时,判断函数在上是否“友好”;(2)若关于x的方程的解集中有且只有一个元素,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.2、A【解析】频数为考点:频率频数的关系3、A【解析】,所以,选A.4、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A5、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.6、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.7、C【解析】将分别看成对应函数的交点的横坐标,在同一坐标系作出函数的图像,数形结合可得答案.【详解】在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出故选:C8、B【解析】将目标函数变为,由此求得如何将变为目标函数.【详解】依题意,目标函数可转化为,故只需将向左平移个单位,故选B.【点睛】本小题主要考查三角函数图像变换中的平移变换,属于基础题.9、B【解析】因为函数f(x)为奇函数,所以.选B10、D【解析】是奇函数,故;又是增函数,,即则有,解得,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.二、填空题:本大题共6小题,每小题5分,共30分。11、④⑤【解析】根据两角和与差的正弦公式可得到sinα+cosαsin(α)结合正弦函数的值域可判断①;根据诱导公式得到=sinx,再由正弦函数的奇偶性可判断②;举例说明该命题正误可判断③;x代入到y=sin(2xπ),根据正弦函数的对称性可判断④;x代入到,根据正切函数的对称性可判断⑤.【详解】对于①,sinα+cosαsin(α),故①错误;对于②,=sinx,其为奇函数,故②错误;对于③,当α、β时,α、β是第一象限的角,且α>β,但sinα=sinβ,故③错误;对于④,x代入到y=sin(2xπ)得到sin(2π)=sin1,故命题④正确;对于⑤,x代入到得到tan()=0,故命题⑤正确.故答案为④⑤【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的化简与求值问题,是综合性题目12、【解析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【点睛】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题13、1【解析】解:因为tan22°+tan23°+tan22°tan23°=tan(22°+23°)(1-tan22°tan23°)+tan22°tan23°=tan45°=114、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:15、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.16、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)1.【解析】(Ⅰ)当时,,结合图象可得若方程有且只有两个不同的实根,只需即可.(Ⅱ)由题意得只需满足即可,根据函数图象的对称轴与区间的关系及抛物线的开口方向求得函数的最值,然后解不等式可得所求试题解析:(Ⅰ)当时,,∵关于的方程有且只有两个不同的实根,∴,∴.∴实数的取值范围为(Ⅱ)①当,即时,函数在区间上单调递增,∵不等式恒成立,∴,可得,∴解得,与矛盾,不合题意②当,即时,函数在区间上单调递减,∵不等式恒成立,∴,可得∴解得,这与矛盾,不合题意③当,即时,∵不等式恒成立,∴,整理得,即,即,∴,解得.当时,则,故.∴.综上可得点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系.当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解18、(1)在上单调递增,在上单调递减;(2).【解析】(1)本题可根据正弦函数单调性得出结果;(2)可令,通过计算得出或,然后根据在上有两个零点即可得出结果.【详解】(1)令,解得,令,解得,故函数在上单调递增,在上单调递减.(2),令,则,,故或,解得或,因为在上有两个零点,所以,解得,故实数的取值范围为.19、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.20、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω由周期T确定,即先由图象得到函数的周期,再求出T(3)φ的求法通常有以下两种:①代入法:把图象上的一个已知点代入解析式(此时,A,ω,B已知)求解即可,此时要注意交点在上升区间还是下降区间②五点法:确定φ值时,往往以寻找“五点法”中的零点作为突破口,具体如下:“第一点”(即图象上升时与x轴的交点中距原点最近的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=21、(1)当时,函数在,上是“友好”的(2)【解析】(1)当时,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论