智能电网构架毕业论文中英文翻译文献_第1页
智能电网构架毕业论文中英文翻译文献_第2页
智能电网构架毕业论文中英文翻译文献_第3页
智能电网构架毕业论文中英文翻译文献_第4页
智能电网构架毕业论文中英文翻译文献_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文资料外文翻译文献场域网络的标准化和灵活的IPv6架构最后一英里的智能电网构架本文旨在为智能电网的最后一英里的基于开放标准IPv6的基础设施提供一个综合和全面的视角,用于支持一系列先进的应用程序(如读表,需求响应,遥测,遥信和电网监控和自动化)同时作为多服务平台也从中受益。在本文中,我们将展示IPv6网络基础设施的各种模块如何提供一个高效,灵活,安全和多业务的基于开放标准的网络。为了讨论电业在转型过程中需要处理的一些问题例如遗留的老设备,网络和应用程序集成,在过渡期推出的混合网络结构的操作,随后的文件会有更进一步的阐述。1.介绍在过去几年,由于在智能电网基础设施的突出作用,最后一英里网络已经获得了相当大的发展势头。这些网络在本文件称为邻区网络(NAN),他们支持一系列应用不仅包括用电计量和管理,而且包括需求响应(DR)和配电自动化(DA)应用高级应用;需求响应应用为用户提供机会可以基于实时电价信息而优化其能源使用;配电自动化(DA)应用它允许分布的监测和控制,自动故障检测,隔离和管理,并作为未来的虚拟电厂,其中包括分布式发电,住宅能源存储(例如,电动汽车EV)充电),以及小规模的社区电力交易。场区网络(FAN)((NAN和具有回程广域网接口的通讯设备的组合)已经成为一个智能电网的网络基础设施的核心组成部分。事实上,他们作为回程网络可以为各种其他电网控制设备提供服务;例如多租户服务(煤气表和水表),家庭局域网(HAN)设备的数据交换服务,这些都通过各种无线连接或有线线路连接的技术。这就形成了对部署的IP协议套件的需求,并使的公开标准的使用提供了可靠性,可扩展性,安全性,跨网络和灵活性,从而能为应付数量快速增长的电网配电网络的关键应用提供支持。IP也使得领区网络(NAN)容易整合到到端到端的网络架构。通过场区网络正在运行的应用程序之一是抄表,每个电表定期把使用数据发向一个事业单位端点的应用服务器。因此,在一个多点到单点(MP2P)模式中,大部分电表的流量是从电表网络到事业单位网络的。随着需求响应,分布式能源资源整合和电动汽车充电等应用程序的出现和扩散,预计整个场区网络的数据流量将大幅增加,交通模式和双向通信的需求会变得复杂得多。特别是场区网络将支持一些利用网络服务来支持一些使用:单个仪表通讯:按需抄表,实时警报报告,把某个位置的电表关闭都需要NMS/前端点的点对点(P2P)的通信电表,反之亦然。DA设备之间的通信。DA设备的子集需要彼此沟通,以管理和控制在某一特定地区的电网运行,包括在某些情况下点到点之间的相互沟通需要灵活运用。HAN应用:HAN应用程序需要同过单个电表作为应用程序的服务器来实现家电和公用事业头端的沟通。例如,用户可以激活直接负荷控制(DLC),授权公用事业公司在电力高峰和/或电价高时远程关闭某些家电(例如,A/C,洗衣机/干衣机)。电动车充电:用户不在家时,需要能够进入各自的车辆充电帐户信息查看。这是为了当他们在路上或走亲访友时能够给车充电。验证用户帐户信息将需要通过电表到公用事业头端服务器来实现通讯,以实现在动态位置时同时对大量的移动车辆充电。多租户服务:把在客户端的信息合并,并在另一端区分几个服务信息以形成一个复杂的多点对多点网络(MP2MP)。例如,这可能是一个连接多个公用事业设备融合的网络,比如开放的表计系统里所提到的英国国家电信运营商DCC或德国通信盒。安全性:强大的身份验证机制用于验证设备连接到先进计量基础设施AMI)网络以及加密数据对隐私和网络保护。网络管理:由于FAN网络承载越来越多的流量,并有严格的服务等级目标(SLO),所以监控和维护网络的健康和性能,管理网络相关的数据就变得至关重要。这将要求电网状态和通讯统计的通讯,从仪表到通信表计网络管理系统(NMS)/首末端都是MP2P方式。组播服务:一组仪表可能需要同时使用多播,如由一个网络管理系统NMS)使用多播请求使软件或参数升级,或对所有的仪表和各种子集仪表发送多播请求。网络协议的关键优势一个端到端的IP智能电网架构可以影响30年互联网协议技术的发展而保证开放标准和互操作性是通过互联网的日常使用和其20亿最终用户证明。注意:使用互联网协议套件并不意味着运行IP的基础设施是已被公开或公开访问的网络,的确许多现有的关键的私营和高度安全的网络,如银行内部网络IP架构,军事和防御网络,公共安全和应急反应网络利用IP架构,这里仅举几例。信息和通信技术(ICT)和较传统的电力行业之间的差异之一是技术的生命周期。通过不修改整个工业流程而能顺利进化步骤,证明了AMI的基础设施选择IP分层协议栈是未来的发展方向。分销系统运营商(DSO)的知识产权的主要好处是:开放和基于标准的:网络,运输和应用层的核心组件都被互联网工程任务组IETF)标准化了,而关键的物理层,数据链路,和应用化协议来自于一般的工业组织,如IEC,ANSI,DLMS/COSEM,SAE,IEEE,ITU等。轻量级:AMI,如智能电表,传感器和执行器网络最后一公里安装的设备不同于PC和服务器。他们在电源,CPU,内存和存储资源上都是有限的。因此,嵌入式网络协议栈必须在几个千字节的RAM和几十千字节的闪存上工作。这种IP协议栈在过去几年已被证明可在这种受限的环境下执行。多功能:在智能电网中的最后一英里基础设施要面对两个主要挑战。首先,一个给定的技术(无线或有线)可能不适合所有领域部署的标准。二,通信技术发展的步伐的速度要快于预期的智能电表的15至20年的寿命。分层IP架构是装备精良,以应付任何类型的物理和数据链路层,使得各种媒体的未来证明可用于部署,并随着时间的推移,不改变整体架构的解决方案和数据流。无处不在:所有最近的不管是通用计算机,服务器,还是轻量级嵌入式系统(TinyOS的,Contiki等)都有一个集成的双IP协议栈(IPv4和IPv6),会随着时间的推移增强。这使的新的网络特性设置随着时间的推移更容易去适应。可扩展性:所谓互联网的普通协议,IP已经大规模部署而且其扩展性也被测试过。数以百万计的私人或公共IP基础设施管理的节点在一个单一的实体(类似FAN部署)下已运行多年,为不熟悉IP网络管理的新来者提供了坚实的基础。管理和安全:通信基础设施的正确操作需要适当的管理和安全功能。30年来运行IP网络的好处之一是它有很好理解的网络管理和安全协议,机制和工具集,这些都被广泛使用。采用^网络管理也有利于公用事业运营业务的应用,利用网络管理工具,以改善他们的服务,例如通过网络管理系统(NMS)的帮助确定停电范围。稳定和弹性:超过30年的存在,它不再是一个问题,IP是一个可行的的解决方案,考虑到它的大,以及建立知识库。场区的网络,更重要的是如何,我们可以利用的关键基础设施,如金融和防御网络以及关键服务,如语音和视频已经转换积累经验的年从封闭的环境中,以开放的IP标准。这也有利于从专业的IT生态系统,可以帮助设计,部署和运营系统解决方案。端到端的:通过采用IP为网络中的任何设备提供了端到端的和双向的通信能力。根据业务的要求实施集中式或分布式数据处理架构。去除中间协议转换网关有利于引进新的服务。IPv6分布式网络构架附近的区域网络的联网需求已被广泛记载:成本效益,可扩展性(网络中有数以百万的节点是常见的),安全性,可靠性和灵活性,这些是绝对要求的,而基于开放标准的技术和适应未来的15至20年的寿命是公用事业的最低期望值。这就解释了为什么IPv6的套件是最初的选择,尽管新的IPv6协议的目的是为了解决这种网络的独特需求,这些将在下一章讨论。采用IPv6有利于在最后一英里成功转型为能源网络。然而在描述更多IPv6网络组件的细节之

前,如IP地址,安全性,服务质量(QoS),路由和网络管理等,首先要问一下我们为什么要使用端到端的IPv6。毕竟,IPv6像任何其他技术一样需要适当的培训劳动力,从技术人员到评估供应商,分包商和承包商的管理人员。赞成在智能电网最后一英里使用端到端IP的主要步骤是要证明IP是轻量级的可以在有限的资源,能源,内存和处理能力受限的设备上使用。因此,FAN视为单一的应用程序,存根网络终端节点(例如智能电表)可以通过网关翻译IP协议达到IP点,每一个网关被捆绑到一个专门的服务和/或解决方案的供应商上。过去的二十年,随着SNA(通过DLSw的),Appletalk的,DECNET,IPX,X25等协议的过渡,向我们表明这种网关的方案只在较小的,单一应用的,网络下的过渡。但私有协议和翻译网关具有从众所周知的严重问题,如高资本支出和高运行成本,还有重大的技术限制,包括缺乏端到端的QoS,快速恢复的一致性,单点故障(除非执行复杂的状态故障切换机制)的条款,限制创新,缺乏可扩展性,容易受到安全攻击等。因此,在许多方面,使用IPv6端到端(IP运行网络中的每个设备)将在服务领域的区域网络是非常优越的。如在图1所示。802154sub-GHzSubscriberDistributedGenerationDistributionProtectionandControlNetworkResidentialMeteringHAN&SmartEnergyProfile2.0802154sub-GHzSubscriberDistributedGenerationDistributionProtectionandControlNetworkResidentialMeteringHAN&SmartEnergyProfile2.0TransformerDistributionEVChargingLargeC&lPublicWorkForceMonitoringAutomationInfrastructureMetersLightingAutomationSWUpgradeNetworkMonitoringAddressAcquisitionControl&ReconfigurationConfigDownload—EventNotificationTimeDistribution-ConnectedGridManagementPublicorPrivateIPInfrastructure

le:2G/3G/LTE.EthemeVFiber,WiMax,B-PLC,...PLCMesh

IEEEP1901.2

IPv6/6LoWPAN/RPLEthernetIPv6Protectionand

ControlNetwork受限制网络的独特的网络要求NAN网络部署下的设备往往在资源方面受制约,通常命名为IP智能对象。考虑其独特的特点和要求,智能对象的网络也被称为低功耗和有损网络(LLN)0典型的IP网络有强大的路由器相互联系以保持高度稳定和快速链接,与之相比LLNs通常是低功耗,低带宽链路(无线和有线)链接的,之间几kbps和几个数百kbps的传输的形成了一个网状网络以保证正确的操作经营。除了提供有限的带宽,看到这样的链接分组交付率(PDR)在60%和90%之间摇摆不定是不寻常的,同时有大量不可预知的错误,甚至在时间间隔之间丢失数据。这些现象可以在无线(如IEEE802.15.4g)和电力线载波通信(PLC)的(如IEEEP1901.2)的链接上看到,数据包传输可能在一天中就会发生变化!IP智能对象的另一个特点是各种类型的节点可以在通信基础设施中混合。这意味着路由协议需要有能力管理基于节点能力的流量,例如:有源供电的电表可以转发流量并和现有的电池供电的水表共存,或电池供电故障电路指标,作为在LLN路由域的一个支叶。节点故障也可能大大超过传统的IP网络节点,传统IP网络都有电源供电并且高度冗余(多处理器,支持不间断转发(NSF)的,服务软件升级(ISSU)等)。另一个LLNs必要特点是可伸缩性。有些LLNs是由几十个节点构成的;其他是由数以百万计的节点构成的,就像在AMI的网络的情况下,他们通常由子网(或更小的网络)几千个节点所构成的。这就解释了为什么指定协议为大规模,限制性,不稳定的环境带来了自身的挑战。例如,在LLN的金科玉律之一,是“under-reacttofailure”与OSPF或ISIS的路由协议相比,网络需要在数十毫秒内重新收敛。面对这一挑战需要一个真正的模式的转变,因为过度反应会导致非常迅速的网络崩溃。此外,控制平面开销应最小化,同时支持动态链路/节点指标,多拓扑路由(地铁),等等。这也解释了导致在本文后面讨论的各种协议为什么经过重新设计,特别是网状路由RPL)的传统的IP网络开发的几种技术。此外,工作组IETF的轻重量实施指南[LWIG]正在为受约束的设备的开发实施准则。最后但并非最不重要的是对使用多年的IP协议和算法来部署高度安全的网络的强烈要求,在本文后面讨论。IPv6智能电网最后一英里基础构架的技术构件今天,互联网主要是运行在IPv4上的,也有些例外,如IPv6是越来越多地被部署在学术和研究网络,领先的互联网服务供应商或企业,以及政府的网络中。IPv4与IPv6的比较参见图3。但是,由于自2011年2月由IANA管理的地址池耗尽互联网面临的一个重大转变[经合组织]。除了小规模的AMI和配电自动化领域用IPv4网络,其余的有机会从一开始就用纯的IPv6版本开始部署。业界一直在IPv6领域努力了近15年了,为了使得采用IPv6能得到和IPv4相同的IP服务(见图5)全面提出了许多建议,和最新的3G蜂窝演变称为LTE(长期演进)(这些建议来自于美国行政管理和预算局USOMB,武装部队FAR,欧盟委员会IPv6的建议,区域互联网注册管理机构的建议,以及IPv4地址枯竭倒数)。此外,正如上面所讨论的所有与新的发展有关的IP智能对象和LLNs,都利用或正在建立IPv6技术。因此,关于使用IPv6的智能电网FAN几个特点来部署的好书在接下来的章节将广泛的回顾一下:一个巨大的地址空间可以容纳任何预期数百万的电表的部署(AMI),成千上万的传感器(DA)部署于成百上千的二次变电站,以及一些独立的电表。这包括额外的地址配备的灵活性,在需要安装的小型设备时有助于适应部署的规模以及降低现场工作人员的任务。IPv6地址的结构也具有足够的灵活性来管理大量的子网络,这些字网络可以创建一些服务,例如电动汽车充电站或分布式可再生能源。IPv6是在开放的射频无线网(IEEE802.15.4g,使用数字无绳超低能源)和电力线的通信基础设施(IEEEP1901.2)真正通讯的IP版本,PLC只定义了其协议版本IPv6的6LoWPAN的适应层。IPv6的是事实上的低功耗和有损网络(RPL)的IETF工作组ROLL-RPL的标准化的IETF路由协议的IP版本,是一个纯IPv6协议。所有著名的的IP功能,使部署设计上的高度可用和安全的通信基础设施与网络操作中心,公共和/或私营广域网(WAN)和所有的邻居区域网络(NAN)绑定。如图2所示RPLdomainMeshedBSn=BaseStationnERn=EdgeRouterRPLdomainMeshedBSn=BaseStationnERn=EdgeRouternM-SmartMeterCentralSystemER2NeighborhoodAreaNetwork(NAN)CoreNetworkWideAreaNetwork(WAN)图2所示的一个基本的FAN前端系统收集仪表读数,维护仪表的配置并监控网络的运行。这是一个端到端的链接,包括通过广泛提供区域网络(WAN)链接的仪表的节点和附近的区域网络(NAN的)。所以,虽然仪表节点的物理连接从WAN变到NAN技术,逻辑上IPv6端到端的链接还在维护。这是通过引入一个或多个NAN边缘的路由器,也被称为连接到广域网的IP边缘路由器,使广域网和NAN之间实现双向数据流。在多服务的基础设施情况下,可以预料IP边缘路由器必须配置为双栈--IPv6和IPv4并有IPv4向IPv6的过渡隧道,以及相反的过渡。当通过传统的串口或以太网接口配电自动化设备,而链接只支持IPv4,或提供的远程工作人员连接到一个IPv4以太网或使用仅支持IPv4的广域网基础设施时(即:GPRS),这种设置是需要的。IP边缘路由器将根据情况进行适当的配置,如通过广域网或隧道技术同时运行IPv6和IPv4,互联网行业测试机制本身已经做过很好的测试。配电系统运营商(DSO)需要把冗余作为一种方法来提高LLNs通信的可靠性,以及衡量由于通讯和计量技术生命周期不兼容对厂商锁定和技术锁定。在广域网和NAN通过网状功能或同时使用多种技术,可以在几个层次实现冗余。路由可以是从端到端透明的和独立的技术。例如,IP边缘路由器的广域网连接可以由私有的可靠的光纤连接,或通过公共灵活的蜂窝通信技术链接,如GPRS/3G/LTE。一个IP边缘路由器可以与计量节点共存一处,或在变电站以分开的实体存在,而大多数的计量节点是利用RF或PLC技术或同时利用两种技术,通过6LoWPAN/IPv6/RPL链接建立网状NAN。由动态IP路由协议启动的多IP边缘路由器的可能性对防止单点故障来说是重要的,特别是像

由现在的集中器导入的私有PLC和RF网。NAN节点允许动态路由运输,如电动汽车,场域工具或传呼机。IP边缘路由器能够在不同NAN技术下路由流量,并与其他IP边缘路由器合作,在全球连接骨干网,这是防止厂商锁定和技术锁定的关键要素,因为替代性的广域网和NAN通信技术可以很容易地适应。与之对比,IP(非IP)网关通过NAN与其他网络链接,该网络的一个设备处理状态和协议转换的失败将不可避免地导致通信故障。这也允许DSO在时间和地点上能优化资本投资(CAPEX)和运营成本(OPEX)。以在一些国家的情况的GSM/GPRS为例。虽然这种成熟的技术是准备好展示并且成本低,但它可能已经是在其生命周期结束时,所以有部署的风险。然而,用它做广域网接入,不仅能轻易的减轻这种风险,把更先进的3G/LTE调制解调器(部分)从一开始就安装在IP边缘路由器上,或当覆盖范围和价格合适时逐渐的把他们替换掉。优化成本的DSO关注的另一个问题是分散部署。NAN技术(RF或PLC的网)通常需要足够密集的节点分组来实现网状功能(要看到它的邻居)。当开始在一个位置推出时,必须先安装一个IP边缘路由器,并足够接近第一个仪表必须,以确保WAN通信。随后它作为一个基础,随着更多的邻居节点部署将成为一个较大的NAN网络。WebServices/EXIHTTPS/CoAPSNMP,IPfbcDNS,WebServices/EXIHTTPS/CoAPSNMP,IPfbcDNS,NTP,IEC61850IEC6D870DNPIEEE1888MODBUSIEC6196SCIMANSIC12.19/C1222DLMS8SEMTCPJUA-EUO一ounu.A=wuouU3ILL君彖NQMJAHd」<&§考艺芝-EEO0Routing-RPL-EUO一ounu.A=wuouU3ILL君彖NQMJAHd」<&§考艺芝-EEO0Routing-RPLIPv6i'IPv4Addressing,Multicast,QoS,Security&02.1X/EAF'TLS打煎女ACCESSCODlfOlSolution6L0WPAN(RFC6282)802.15.4eMACIEEEa02ll5.4MAC(indudingFHSS1IEEEP1S01_2M^CIEEEBd215.4g(FSK,DSSSOFDM)IEEEP1S01.2PHYIEEE8C2.15.4MACIEEE80GHzDS6SIETFRFC2464IETFRFC5072IETFRFC5121IIEEE802.11W-FiIEEE802.3Etiiarnet2G/3G/LTECellularIEEE802.16WilMax•Standardizationatalllevelstoensureinteroperabilityand*Enablescommonapplicationlayerservicesovervariousreducetechnologyriskforutilitieswiredandwirelesscommunicationtechnologies图3:智能电网场域网IPv6网络协议栈图3总结了被提议的场区网络的整体的端到端IPv6架构,并清楚地显示分层架构所提供的力量和灵活性。第一层是相互独立,这使得应用程序编程接口(API)层与层之间有允许跨层优化的可能。例如,可以添加新的链接类型,而无需重新审视网络寻址方案,或新应用程序可以被支持而不影响其余协议栈。另一个例子,路由功能在第3层,这使新添加的数据链路层不影响路由架构。在本章的其余部分,我们会详细描述FAN网络协议栈的相关技术方面,目前知道已经现在已有过多的IP协议而无需任何改变就可以重新使用。外文文献原文AStandardizedandFlexibleIPv6ArchitectureforFieldAreaNetworksSmartGridLastMileInfrastructureThispaperisintendedtoprovideasyntheticandholisticviewofopenstandardsInternetProtocolversion6(IPv6)basedarchitectureforSmartGridLastMileInfrastructuresinsupportofanumberofadvancedSmartGridapplications(meterreadout,demand-response,telemetry,andgridmonitoringandautomation)anditsbenefitasatrueMulti-Servicesplatform.Inthispaper,weshowhowthevariousbuildingblocksofIPv6networkinginfrastructurecanprovideanefficient,flexible,secure,andmulti-servicenetworkbasedonopenstandards.Inordertodiscusstransitionpathsforelectricutilitiesthatdealwithsuchissuesaslegacydevice,networkandapplicationintegration,andtheoperationofhybridnetworkstructuresduringtransitionalrollouts,afollow-uppaperwillneedtobedeveloped.1、Introduction:LastmilenetworkshavegainedconsiderablemomentumoverthepastfewyearsduetotheirprominentroleintheSmartGridinfrastructure.Thesenetworks—referredasNeighborhoodAreaNetworks(NAN)inthisdocument—supportavarietyofapplicationsincludingnotonlyelectricityusagemeasurementandmanagement,butalsoadvancedapplicationssuchasDemand-Response(DR),whichgivesuserstheopportunitytooptimizetheirenergyusagebasedonreal-timeelectricitypricinginformation,DistributionAutomation(DA),whichallowsdistributionmonitoringandcontrol,andautomaticfaultdetection,isolationandmanagement,andservesasafoundationforfutureVirtualPowerPlants,whichcomprisedistributedpowergeneration,residentialenergystorage(e.g.,incombinationwithElectricVehicle(EV)charging),andsmallscaletradingcommunities.FieldAreaNetworks(FAN)—thecombinationofNANandcommunicationdeviceofferingthebackhaulWANinterface(s)—haveemergedasacentralcomponentoftheSmartGridnetworkinfrastructure.Infact,theycanserveasbackhaulnetworksforavarietyofotherelectricgridcontroldevices;multi-tenantservices(gasandwatermeters),anddataexchangestoHomeAreaNetwork(HAN)devices,allconnectedthroughavarietyofwirelessorwiredlinetechnologies.ThishascreatedtheneedfordeployingtheIP(InternetProtocol)suiteofprotocols,enablingtheuseofopen-standardsthatprovidethereliability,scalability,security,inter-networkingandflexibilityrequiredtocopewiththefast-growingnumberofcriticalapplicationsfortheelectricgridthatdistributionpowernetworksneedtosupport.IPalsofacilitatesintegrationoftheNeighborhoodAreaNetworks(NAN)intoend-to-endnetworkarchitecture.OneapplicationbeingrunoverFieldAreaNetworksismeterreading,whereeachmeterperiodicallyreportsusagedatatoautilityhead-endapplicationserver.ThemajorityofmetertrafficwasthusdirectedfromthemeternetworktotheutilitynetworkinaMultipoint-to-Point(MP2P)fashion.WiththeemergenceandproliferationofapplicationssuchasDemandResponse,distributedenergyresourceintegrationandElectricalVehiclecharging,itisexpectedthatthetrafficvolumeacrosstheFieldAreaNetworkswouldincreasesubstantiallyandtrafficpatternsandbi-directionalcommunicationrequirementswouldbecomesignificantlymorecomplex.Inparticular,FieldAreaNetworksareexpectedtosupportanumberofusecasesleveragingnetworkservices:Communicationwithanindividualmeter.On-demandmeterreading,real-timealertreporting,andshutdownofpowertoasinglelocationrequirePoint-to-Point(P2P)communicationbetweentheNMS/Head-endandtheelectricmeterandviceversa.CommunicationamongDAdevices.SubsetsofDAdevicesneedtocommunicatewitheachotherinordertomanageandcontroltheoperationoftheelectricgridinagivenarea,requiringtheuseofflexiblecommunicationwitheachother,includingPeer-to-Peerinsomecases.HANapplications.HANapplicationstypicallyrequirecommunicationbetweenhomeappliancesandtheutilityhead-endserverthroughindividualmetersactingasapplication’sgateways.Forexample,ausermayactivateDirectLoadControl(DLC)capabilities,empoweringtheutilitycompanytoturnoffordowncertainhomeappliancesremotely(e.g.A/C,washer/dryer),whendemandand/orthecostofelectricityishigh.ElectricVehicleCharging.Usersneedtohaveaccesstotheirindividualvehiclechargingaccountinformationwhileawayfromhomeinordertobeabletochargetheirvehicleswhileontheroadorwhilevisitingfriends.Verifyinguserandaccountinformationwouldrequirecommunicationthroughthemetertotheutilityhead-endserversfrompotentiallyalargesetofnomadicvehiclesbeingchargedsimultaneouslyfromdynamiclocations.Multi-TenantServices.CombininginformationatthecustomersideanddifferentiatinginformationintoseveralservicesattheothersidedevisesforacomplexMultipoint-to-Multipointnetwork(MP2MP).Forexample,thiscouldbeaconvergednetworkconnectingdevicesfrommultipleutilitiesassuggestedbytheUKnationalmulti-utilitytelecomoperatorDCCorGermanymulti-utilitycommunicationboxasspecifiedinOpenMeterSystems.Security.StrongauthenticationmechanismsforvalidatingdevicesthatconnecttotheAdvancedMeteringInfrastructure(AMI)networkaswellasncryptionfordataprivacyandnetworkprotection.NetworkManagement.AstheFANcarriesincreasinglymoretrafficandissubjecttostringentServiceLevelObjectives(SLOs),managingnetwork-relateddatabecomescriticaltomonitoringandmaintainingnetworkhealthandperformance.ThiswouldrequirethecommunicationofgridstatusandcommunicationsstatisticsfromthemeterstotheNetworkManagementSystem(NMS)/Head-endinaMP2Pfashion.•MulticastServices.Groupsofmetersmayneedtobeaddressedsimultaneouslyusingmulticast,e.g.,toenablesoftwareupgradeorparametersupdatessentbyanetworkmanagementsystem(NMS)toallmetersusingmulticastrequests,andmulticastqueriesformeterreadingsofvarioussubsetsofthemeters.TheKeyAdvantagesofInternetProtocolAnend-to-endIPSmart-Gridarchitecturecanleverage30yearsofInternetProtocoltechnologydevelopment[RFC6272]guaranteeingopenstandardsandinteroperabilityaslargelydemonstratedthroughthedailyuseoftheInternetanditstwobillionend-users[Stats].Note~UsingtheInternetprotocolsuitedoesnotmeanthataninfrastructurerunningIPhastobeanopenorpubliclyaccessiblenetworndeed,manyexistingmission-criticalbutprivateandhighlysecurenetworksleveragetheIParchitecture,suchasinter-bankingnetworks,militaryanddefensenetworks,andpublic-safetyandemergency-responswetworks,tonameafew.OneofthedifferencesbetweenInformationandCommunicationsTechnology(ICT)andthemoretraditionalpowerindustryisthelifetimeoftechnologies.SelectingtheIPlayeredstackforAMIinfrastructurebringsfutureproofingthroughsmoothevolutionarystepsthatdonotmodifytheentireindustrialworkflow.KeybenefitsofIPforadistributionsystemoperator(DSO)are:OpenandStandards-based:Corecomponentsofthenetwork,transportandapplicationslayersstandardizedbytheInternetEngineeringTaskForce(IETF)whilekeyphysical,datalink,andapplicationsprotocolscomefromusualindustrialorganizations,suchas,IEC,ANSI,DLMS/COSEM,SAE,IEEE,ITU,etc.Lightweight:DevicesinstalledinthelastmileofanAMInetworksuchassmartmeters,sensors,andactuatorsarenotlikePCandservers.Theyhavelimitedresourcesintermsofpower,CPU,memory,andstorage.Therefore,anembeddednetworkingstackmustworkonfewkilobitsofRAMandafewdozenkilobitsofFlashmemory.IthasbeendemonstratedoverthepastyearsthatproductionIPstacksperformwellinsuchconstrainedenvironments.(See[IP-light])Versatile:LastmileinfrastructureinSmartGridhastodealwithtwokeychallenges.First,onegiventechnology(wirelessorwired)maynotfitallfielddeployment’scriteria.Second,communicationtechnologiesevolveatapacefasterthantheexpected15to20yearslifetimeofasmartmeter.ThelayeredIParchitectureiswellequippedtocopewithanytypeofphysicalanddatalinklayers,makingitfutureproofasvariousmedicanbeusedinadeploymentand,overtime,withoutchangingthewholesolutionarchitectureanddataflow.Ubiquitous:Allrecentoperatingsystemsreleasesfromgeneral-purposecomputersandserverstolightweightembeddedsystems(TinyOS,Contiki,etc.)haveanintegrateddual(IPv4andIPv6)IPstackthatgetsenhancedovertime.Thismakesanewnetworkingfeatureseteasiertoadaptovertime.Scalable:AsthecommonprotocoloftheInternet,IPhasbeenmassivelydeployedandtestedforrobustscalability.MillionsofprivateorpublicIPinfrastructurenodes,managedunderasingleentity(similarlytowhatisexpectedforFANdeployments)havebeenoperationalforyears,offeringstrongfoundationsfornewcomersnotfamiliarwithIPnetworkmanagement.ManageableandSecure:Communicationinfrastructurerequiresappropriatemanagementandsecuritycapabilitiesforproperoperations.Oneofthebenefitsof30yearsofoperationalIPnetworksisitssetofwell-understoodnetworkmanagementandsecurityprotocols,mechanisms,andtoolsetsthatarewidelyavailable.AdoptingIPnetworkmanagementalsohelpsutilityoperationalbusinessapplicationbyleveragingnetwork-managementtoolstoimprovetheirservices,forexamplewhenidentifyingpoweroutagecoveragethroughthehelpoftheNetworkManagementSystem(NMS).Stableandresilient:Withmorethan30yearsofexistence,itisnolongeraquestionthatIPisaworkablesolutionconsideringitslargeandwell-establishedknowledgebase.MoreimportantforFieldAreaNetworksishowwecanleveragetheyearsofexperienceaccumulatedbycriticalinfrastructures,suchasfinancialanddefensenetworksaswellascriticalservicessuchasVoiceandVideothathavealreadytransitionedfromclosedenvironmentstoopenIPstandards.ItalsobenefitsfromalargeecosystemofITprofessionalsthatcanhelpdesigning,deployingandoperatingthesystemsolution.End-to-end:TheadoptionofIPprovidesend-to-endandbi-directionalcommunicationcapabilitiesbetweenanydevicesinthenetwork.Centralizedordistributedarchitecturefordatamanipulationsareimplementedaccordingtobusinessrequirements.Theremovalofintermediateprotocoltranslationgatewaysfacilitatestheintroductionofnewservices.AnIPv6DistributionNetworkArchitectureThenetworkingrequirementsforNeighborhoodAreaNetworkshavebeenextensivelydocumented:costefficiency,scalability(millionsofnodesinanetworkiscommon),security,reliabilityandflexibilityareabsolutemusts,andtechnologiesbasedonopenstandardsandthefutureproofingof15to20yearslifetimeareminimumexpectationsfromutilities.ThisexplainswhytheIPv6suitewastheinitialprotocolofchoice,althoughnewIPv6protocolshavebeendesignedtoaddresstheuniquerequirementsofsuchnetworks,asdiscussedinthenextchapter.TheadoptionofIPv6facilitatesasuccessfultransformationtoconnectedenergynetworkinthelastmile.However,beforedescribingigreaterdetailIPv6networkingcomponentssuchasIPaddressing,security,QualityofService(QoS),androutingandnetworkmanagement,itisworthaskingwhyshouldweuseend-to-endIPv6?Afterall,IPv6asanyothertechnologiesrequiresappropriateeducationtothewholeworkforce,fromtechnicianstotheexecutivesevaluatingvendors,subcontractorsandcontractors.OneofthemajorstepsinfavorofbuildingthemomentumaroundusingIPend-to-endirthelastmileofSmartGridnetworkswastodemonstratethatIPcouldbelightenoughtobeusedonconstraineddeviceswithlimitedresourcesintermsofenergy,memory,andprocessingpower.ThusFANswereseenassingleapplication,stubnetworkswithendnodessuchasmetersnotrunningIPthatcouldbereachedthroughIPthroughprotocol-translationgateways,witheachgatewaybeingtiedtoadedicatdserviceand/orsolution’svendor.Thepasttwodecades,withthetransitionofprotocolssuchasSNA(throughDLSw),Appletalk,DECnet,IPX,andX25,showedusthatsuchgatewayswereviableoptionsonlyduringtransitionperiodswithsmaller,singleapplication,networks.Butproprietaryprotocolandtranslationgatewayssufferfromwell-knownsevereissues,suchashighCapExandOpExl,alongwithsignificanttechnicallimitations2,includinglackofend-to-endcapabilitiesintermsofQoS,fastrecoveryconsistency,singlepointoffailures(unlessimplementingcomplexstatefulfailovermechanisms),limitingfactorsintermsofinnovation(forcingtoleastcommondenominator),lackofscalability,vulnerabilitytosecurityattacks,andmore.Therefore,usingIPv6end-to-end(IPrunningoneachandeverydeviceinthenetwork)willbe,inmanyways,amuchsuperiorapproachformulti-servicesFieldAreaNetworksasshownonFigurel.

Figure1.Multi-ServicesFigure1.Multi-ServicesInfrastructureforLastMileSmartGridTransformationSOurce:Cisco)TheUniqueNetworkRequirementsofConstrainedNetworksDevicesdeployedinthecontextofNANsareoftenconstrainedintermsofresourcesandoftennamedIPSmartObject.Smart-ObjectnetworksarealsoreferredtoasLowpowerandLossyNetworks(LLN)consideringtheiruniquecharacteristicsandrequirements.BycontrastwithtypicalIPnetworks,inwhichpowerfulroutersareinterconnectedbyhighlystableandfastlinks,LLNsareusuallyinterconnectedbylow-power,low-bandwidthlinks(wirelessandwired)operatingbetweenafewkbpsandafew-hundredskbpsandformingameshednetworkforguaranteeingproperoperations.Inadditiontoprovidinglimitedbandwidth,itisnotunusualtoseeonsuchlinksthePacketDeliveryRate(PDR)oscillatingbetween60percentand90percent,withlargeburstsofunpredictableerrorsandevenlossofconnectivityatintervals.Thosebehaviorscanbeobservedonbothwireless(suchasIEEE802.15.4g)andPowerLineCommunication(PLC)(suchasIEEEP1901.2)links,wherepacketdeliveryvariationmayhappenduringthecourseofoneday!AnothercharacteristicofIPsmartobjectsisthatvarioustypesofnodescouldgetmixedinthecommunication’sinfrastructure.Itimpliesthattheroutingprotocolneedstohavethecapabilitymanagingtrafficpathsbasedonnode’scapabilities—ie:poweredelectricmetersabletoforwardtrafficandco-existingwithbatterypoweredwatermeters,orbatterypoweredfaultedcircuitindicators,actingasleavesinaLLNroutingdomain.NodefailuresmayalsobesignificantlymorefrequentthanintraditionalIPnetworkswherenodeshaveasmuchaspowertheyrequireandarehighlyredundant(multiprocessors,supportingnon-stopforwarding(NSF),In-ServiceSoftwareUpgrade(ISSU),etc).AnothernecessarycharacteristicforLLNsisscalability.SomeLLNsaremadeupofdozensofnodes;otherscomprisemillionsofnodes,asisthecaseofAMInetworks,howevertheyareusuallymadeupofsubnets(orsmallernetworks)ofafewthousandnodes.Thisexplainswhyspecifyingprotocolsforverylarge-scale,constrained,andunstableenvironmentsbringsitsownchallenges.Forexample,oneofthegoldenrulesinanLLNisto“under-reacttofailure,”bycontrasttoroutingprotocolssuchasOSPForISIS,wherethenetworkneedstore-convergewithinafewdozensofmilliseconds.Meetingthischallengerequiredarealparadigmshift,sinceover-reactionwouldlead,veryrapidly,tonetworkcollapse.Furthermore,control-planeoverheadshouldbeminimized,whilesupportingdynamiclink/nodemetrics,Multi-TopologyRouting(MTR),andsoforth.ThatexplainswhyseveraltechniquesthatweredevelopedfortraditionalIPnetworkshadbeenredesignedresultinginvariousprotocolsespeciallyforMeshrouting(RPL)asdiscussedlaterinthispaper.Inaddition,theIETFLight-WeightImplementationGuidanceWG[LWIG]isdevelopingimplementationguidelinesforconstraintdevices.Lastbutnotleastisthestrongrequirementfordeployinghighlysecurenetworks,usingyearsofIPprotocolsandalgorithms,asdiscussedlaterinthispaper.TheTechnicalComponentsofIPv6SmartGridLastMileInfrastructureToday,theInternetrunsmostlyoverIPversion4(IPv4),withexceptionsinacademicandresearchnetworks,leadingInternetServiceProvidersorEnterprises,andgovernmentnetworks(whereIPv6isincreasinglybeingdeployed).SeeFigure3foranIPv4-IPv6comparison.However,theInternetfacesamajortransition[OECD]duetotheexhaustionofaddresspoolmanagedbyIANAsinceFebruary2011.WithlittleexistingIPv4networkinglegacyintheareasofAMIandDistributionAutomation,thereisanopportunitytostartdeployingIPv6asthedefactoIPversionfromDayOne.TheindustryhasbeenworkingonIPv6fornearly15years,andtheadoptionofIPv6~whichprovidesthesameIPservicesasIPv4(seefigure5)—wouldbefullyalignedwithnumerousrecommendations(U.S.OMBandFAR,EuropeanCommissionIPv6recommendations,RegionalInternetRegistryrecommendations,andIPv4addressdepletioncountdown)andlatest3GcellularevolutionknownasLTE(LongTermEvolution).Moreover,allnewdevelopmentsinrelationtoIPforSmartObjectsandLLNsasdiscussedabove,makeuseoforarebuiltonIPv6technology.Therefore,theuseofIPv6forSmartGridFANsdeploymentbenefitsfromseveralfeatures,somebeingextensivelyreviewedinthenextsections:Ahugeaddressspaceaccommodatinganyexpectedmulti-millionsmeter’sdeployment(AMI),thousandsofsensors(DA)overthehundredthousandsofsecondarysubstationsandadditionallyallstandalonemeters.Itincludesadditionalflexibilityofaddressconfigurationthathelpsadaptingwiththesizeofdeploymentsaswellastheneedtolowerfieldworkerstaskswheninstallingsmalldevices.ThestructureoftheIPv6addressisalsoflexibleenoughtomanagealargenumberofsub-networksthatmaybecreatedbyfuturesservicessuchase-vehiclechargingstationsordistributedrenewableenergy.IPv6isthedefactoIPversionformetercommunicationoveropenRFMeshwireless(IEEE802.15.4g,DECTUltraLowEnergy)andPowerLineCommunicationsinfrastructures(IEEEP1901.2)usingthe6LoWPANadaptationlayerthatonlydefinesIPv6asitsprotocolversion.IPv6isthedefactoIPversionforthestandardizedIETFRoutingProtocolforLowPowerandLossyNetworks(RPL)—IETFRoLLWG—RPLisanIPv6-onlyprotocol.Thisgoeswithoutforgettingallwell-knownIPfeaturessetthatenablesdesignvariationsforthedeploymentofhighlyavailableandsecuredcommunicationsinfrastructuretyingaNetworkOperationsCenter(s)andallNeighborhoodAreaNetworks(NAN)throughpublicand/orprivateWideAreaNetworks(WAN)linkssuchasshownonFigure2.CentralSystemNeighborhoodAreaNetwork(NAN)BSn=BaseStationCentralSystemNeighborhoodAreaNetwork(NAN)BSn=BaseStationnERn=EdgeRoulernM=SmartMeterFigure2.ExampleofbasicLastMileSmartGridInfrastructurewithseverallevelsofredundancy(Source:Alliander)TheHead-endSystemofabasicFANasshowninFigure2collectsthemeterreadings,maintainsmeterconfigurationsandmonitorsnetworkoperation.Ithasend-to-endconnectionstothemeternodes,providedbywideareaietworks(WANs)andneighborhoodareanetworks(NANs).So,whilethephysicalconnectionstothemeternodeschangefromWANtoNANtechnologies,theprincipleoflogicalend-to-endIPv6connectionsismaintained.ThisisachievedbyintroducingoneormoreroutersatthebordersoftheNAN,alsocalledIPEdgeRoutersthatconnecttotheWAN,enablingbi-directionaldatastreamsbetweenWANandNAN.Incaseofmulti-servicesinfrastructures,itmaybeexpectedthatIPEdgeRoutershavetobeconfiguredasdual-stack—IPv6andIPv4andwillbecapableoftunnelingIPv6overIPv4orvice-versa.ThismayberequiredwhenconnectingoveritsserialorEthernetinterfaceslegacyDistributionAutomationdevicesthatonlyrunIPv4orprovidingremoteworkforceconnectivitytoanIPv4IntranetorwhenusingWANinfrastructurethatareIPv4-only(ie:GPRS).TheIPEdgeRouterwillhavetobeproperlyconfiguredtoaccommodatescenariosuchasrunningbothIPv6andIPv4overtheWANortunnelingoneprotocolversionovertheother,mechanismsthathavebeenwelldefinedandtestedbytheInternetindustry.DistributionSystemOperators(DSOs)requireredundancyasameanstoimprovecommunicationreliabilityintheLLNs,aswellasmeasureagainstvendorlock-inandtechnologylock-induetoincompatibilityinlifetimebetweencommunicationandmeteringtechnologies.RedundancycanbeachievedatseverallevelsthroughmeshcapabilitiesintheWANandNANorbyusingmultipletechnologiessimultaneously.Routingshallbetransparentfromendtoendandindependentfromthetechnology.Forexample,theWANconnectionoftheIPEdgeRouterisestablishedbyaprivatereliablefiberconnectionorbypublicfle

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论