云南省曲靖市2021-2022学年中考数学全真模拟试卷含解析及点睛_第1页
云南省曲靖市2021-2022学年中考数学全真模拟试卷含解析及点睛_第2页
云南省曲靖市2021-2022学年中考数学全真模拟试卷含解析及点睛_第3页
云南省曲靖市2021-2022学年中考数学全真模拟试卷含解析及点睛_第4页
云南省曲靖市2021-2022学年中考数学全真模拟试卷含解析及点睛_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)2.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28 B.26 C.25 D.223.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.454.下面几何的主视图是()A. B. C. D.5.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.6.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是()A.13,5 B.6.5,3 C.5,2 D.6.5,27.下列各式中计算正确的是()A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t8.下列二次根式中,为最简二次根式的是()A. B. C. D.9.在平面直角坐标系中,函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限10.下列四个图案中,不是轴对称图案的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.12.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.13.如果,那么______.14.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.15.直线y=﹣x+1分别交x轴,y轴于A、B两点,则△AOB的面积等于___.16.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.三、解答题(共8题,共72分)17.(8分)如图,一次函数y=﹣12x+52的图象与反比例函数y=(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.18.(8分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.19.(8分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.20.(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)21.(8分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.∵∴(思考)在上述问题中,h1,h1与h的数量关系为:.(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.22.(10分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_____.(2)抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.(3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.23.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.2、A【解析】

如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.【详解】如图,由题意得:BM=MN(设为λ),CN=DN=3;∵四边形ABCD为矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五边形ABMND的周长=6+5+5+3+9=28,故选A.【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.3、C【解析】

根据题意列出代数式,化简即可得到结果.【详解】根据题意得:a÷(1−20%)=a÷45=5故答案选:C.【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.4、B【解析】

主视图是从物体正面看所得到的图形.【详解】解:从几何体正面看故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5、A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.考点:三视图视频6、D【解析】

根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,【详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜边为外切圆直径,∴外切圆半径==6.5,内切圆半径==2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.7、D【解析】试题解析:A、原式计算错误,故本选项错误;B、原式计算错误,故本选项错误;C、原式计算错误,故本选项错误;D、原式计算正确,故本选项正确;故选D.点睛:同底数幂相除,底数不变,指数相减.8、B【解析】

最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(整式)(分母中不含根号)2.被开方数中不含能开提尽方的(因数)或(因式).【详解】A.=3,不是最简二次根式;B.,最简二次根式;C.=,不是最简二次根式;D.=,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.9、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.10、B【解析】

根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、a<2且a≠1.【解析】

利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.【详解】试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.12、.【解析】

设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;【详解】设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,作A1M⊥FA交FA的延长线于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,FM=5a,在Rt△A1FM中,FA1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F1L=a,根据对称性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六边形GHIJKI:S六边形ABCDEF=()2=,故答案为:.【点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.13、;【解析】

先对等式进行转换,再求解.【详解】∵∴3x=5x-5y∴2x=5y∴【点睛】本题考查的是分式,熟练掌握分式是解题的关键.14、2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理15、.【解析】

先求得直线y=﹣x+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得△AOB的面积即可.【详解】∵直线y=﹣x+1分别交x轴、y轴于A、B两点,∴A、B点的坐标分别为(1,0)、(0,1),S△AOB=OA•OB=×1×1=,故答案为.【点睛】本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线y=﹣x+1与x轴、y轴的交点坐标是解决问题的关键.16、【解析】

如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案为.三、解答题(共8题,共72分)17、(1)y=2x(2)(0,【解析】

(1)根据反比例函数比例系数k的几何意义得出12【详解】(1)∵反比例函数y==kx∴12∵k>0,∴k=2,故反比例函数的解析式为:y=2x(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,则PA+PB最小.由y=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1设直线A′B的解析式为y=mx+n,则-m+n=24m+n=12∴直线A′B的解析式为y=-3∴x=0时,y=1710∴P点坐标为(0,1710【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.18、(1)详见解析;(2)OF=.【解析】

(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.19、证明见解析.【解析】

连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.【详解】证明:如图,连接,∵,∴,∵,∴,∴,∴,∴∵∴,则,∴,∴,即,在和中,∵,∴,∴∵是的切线,则,∴,∴,则,∴是的切线.【点睛】本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.20、【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).【解析】

思考:根据等腰三角形的性质,把代数式化简可得.探究:当点M在BC延长线上时,连接,可得,化简可得.应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.【详解】思考即h1+h1=h.探究h1-h1=h.理由.连接,∵∴∴h1-h1=h.应用在中,令x=0得y=3;令y=0得x=-4,则:A(-4,0),B(0,3)同理求得C(1,0),,又因为AC=5,所以AB=AC,即△ABC为等腰三角形.①当点M在BC边上时,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②当点M在CB延长线上时,由h1-h1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,综上,所求点M的坐标为或.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.22、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,进而得出答案.【详解】(1)MN与AB的关系是:MN⊥AB,MN=AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=AB,故答案为MN⊥AB,MN=AB;(2)∵抛物线y=对应的准蝶形必经过B(m,m),∴m=m2,解得:m=2或m=0(不合题意舍去),当m=2则,2=x2,解得:x=±2,则AB=2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y轴,∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴抛物线的解析式是:y=x2﹣2;②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.23、(1)见解析;(1)30°或150°,的长最大值为,此时.【解析】

(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论