下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NYUfSTERNNEWYORKUNIVERSITYLEONARDN.STERNSCHOOLOFBUSINESS
DepartmentofEconomicsECONOMETRICSIFall2000-Tuesday/Thursday10:00-ll:20ProfessorWilliamGreeneOffice:KMC7-88/-wgreeneOfficeHours:TR,3:00-5:00URLforcoursewebpage:
Phone:212.998.0876HomeEmail:wgreene@/-wgreene/Econometrics/Econometrics.htmAssignment6
AsymptoticsforLeastSquaresandtheClassicalRegressionModelSolutionsLParameterEstimationinaDistributionA.RegressionFunctionsf(x|y)=f(x,y)/f(y)=f(y|x)f(x)/f(y)={0exp[-(p+0)x](px)y/y!}/f(y).Thejointdistributionistheproductoftheconditional,f(y|x)andthemarginal,f(x).Weneedf(y),whichisfoundbyintegratingxoutofthejointdistribution.Thus,f(y)=「噎(P+g(Px),/y!dxWellskipafewlines.Youcanpull0py/y!outoftheintegral.Whatremainsisf(y)二叩y/y!「e-^xxydx.Theintegralisagammaintegral(seepage178ofyourtext),with(P-1)equaltoy,cequalto1,andaequalto(p+0).We'regoingtoneedthisafewmoretimes,sohereisageneralresult:fe~^xxP~[dx=,whichwewillusefordifferentvaluesofXandP.J。 XPPluggingtermsintothatresultforthegammaintegral,wegetthattheintegralisequaltor(y+l)/(p+0)y+,.Now,r(y+l)=y!whenyisaninteger,whichitishere.Thiscancelsthey!wealreadyhave.Pluggingintheterms,weareleftwith
f(y)Now,weneedf(x|y)sowedividethejointdensitybythismarginal.Justdoingthedivisionandskippingalineofalgebraprovidesf(x|y)二6-f(x|y)二6-(肌0“邛+0)),+iTogettheconditionalmean,wenowneedE[x|y]=fxf{x|y)dx
JO(p+9)E[x|y]=fxf{x|y)dx
JO(p+9)>+1rylJ。e-^xy^dxwhichisagammaintegralagain.Usingtheresultgivenaboveandtheresultthat「(y+2)=(y+l)r(y+l)=(y+l)y!,sowecangetthefactorialstocancel,theendresultsimplifiesto(2)E[x|yl2±L=J_(2)E[x|yl2±L=J_+^1_
p+ep+ep+e=+|iy,where日l/(p+0).(yikes!!)and,remember,E[y|x]=Px.SimpleEstimation:Linearregressionofyonxwithoutaconstantestimatespconsistently.Callthisestimatorh.Linearregressionofxon。'+1)estimates日consistently.Callthislatterestimatorm.Use1/mtoestimatep+0.So,1/m-hestimates0consistently,byvirtueoftheSlutskytheorem.Thisestimatorisnotunbiased.Itisonlyconsistent.TheestimatorofPisunbiased,ascanbeshownusingallourresultsforthelinearregressionmodel.Theestimatorofisalsounbiased.Sinceweareusing1/m,itisnotunbiased,sinceE[l/m]isnot1/E[m].(Seethetext,onJensen'sinequality.)Onemoreapproach...IfE[x]=1/0,thenXisaconsistentestimatorof1/0,and0canbeestimatedconsistentlyusing1/X.Onceagain,thisestimatorwillnotbeunbiased,sinceXisunbiasedfor1/0andthereciprocalfunctionisnotlinear.(SeepartB.)MaximumLikelihoodEstimation:Theloglikelihoodfunctionisthelogoftheproductofthedensities,orthesumofthelogs;Log-L=Z;f-px/+j/logCpx/)-logy;!]=2,[-。为+)Mog(。)+ylog®)-logy!]ThederivativeiseiogL/dp=(-2访)+(1/。)(2必).Equatetozeroanddividebothsidesbyn,sothesolutionisthepforwhich-X+(l/p)y=Q.Thesolutionfallsouteasily.ILAsymptoticEfficiency.A.Forthemaximumlikelihoodestimatorfoundabove,bm=y/x.Theexpectationconditionedonthex'sisE[bm|x]=(l/X)E[j|x]=(l/X)(l/n){E[E/yz]|x}二(1/冗)(1/〃)(2£回比])二(1/工)(1/〃)(2佃)=p-SinceE[bm|xJ=0,E[bmJ=p.Thismakesitunbiased.Forconsistency,wellusemeansquareconvergence.Themeanobviouslyconvergestop,sinceisequalspforalln.Thevarianceistheexpectedconditionalvarianceplusthevarianceoftheconditionalmean.SincetheconditionalmeanisP,thevarianceoftheconditionalmeaniszero.Tofindthevariance,westartwithbm=y/x=(l/x)(l/n)Eiyi.So,theconditionalvarianceisVar[bm|x]=[(l/x)(l/n)JVar[bm|x]=[(l/X)(l/n)]2xSipXi=p/(nX)Itisobviousthattheconditionalvariancegoestozero,since1/Xconvergesto1/E[x]=0,whichgetsustheconsistencyweneed,bymeansquare.Infact,itispossibletogettheexact,unconditionalvariance.(Though,thisisnotstrictlynecessary;youcouldstophere.)Inassignment7,you'llfindthatEf1/x1isactually0xn/(n-l).Thisgetsustheconsistencythatweneedunconditionally.Forlookingahead,weshouldnotethatthelargesamplevarianceabovewillbehavethesameasAsy.Var[bm]=p/nxwhatever1/Xconvergesto,whichis0,whichleadsustoAsy.Var[b,n]=p0/n.Forleastsquares,wehaveanunbiasednessprooffromourclassworkthatstillapplies,yi=E[yi|x1+&bysimpleconstruction;wisjustthedeviationtomakethisaddup.But,alsobyconstruction,E[Si|Xi]=0.Now,y=xp+8,andourproofofunbiasednessgoesthrough.But,letsdoitthelongway,soweseetheresultinfull.b=(x'y)/(x*x)=2凶yi/EjXi2.E[b|x]=.XjE[yi|xi]/ZiXp='.胱/ZjXi2.Thesumsofsquaredx'scancelafterpispulledoutofthesummation,whichgetsustheunbiasedness.ThevarianceoftheleastsquaresestimatorisnotW/x'xhere,however,sincethisisnotaclassicalregressionmodel.Inordertogetconsistencyofleastsquares,wearegoingtohavetogetitsvariancetogotozero.Thevarianceisgivenintheproblemset:Varfb|x]=(1/SjXi2)x(1/ZjXi2)xpSiXp.It'snothardtoprovethis.Varfb|x]=Var[SiXiyi/SiXi2|x]=[1/XiXi2]2xVar[ZiXjyi]=[1/ZjXi2]2xI,Var[Xiyi|Xi]二[1/ZiXi2]2xZiXi2Var[yi|xi]=[1/ZiXi2]2xI,xrpXi]=P[l/SiXi2]2xZixp=p(l/ZiXi2)x(1/ZjXi2)xZiXi3Toseewherethisgoes,multiplythemiddletermbynanddividethethirdtermbyn-then'scancel.Now,themiddleterm,byvirtueofGreene'snontheoremandtheSlutskytheoremconvergesto1/E[x2],or02/2.ThethirdtermwillconvergetoE[x3]=6/03.So,theproductwillconvergeto3p/0.Thatleavesthefirstterm,whichdoesn'tconvergeatall,sinceitisjustasumofnsquares,whichkeepsgrowing.Thatgetsusconsistency,sincethevariancegoestozero.Theasymptoticvarianceoftheleastsquaresestimatorisgivenbytheexpressionabove,involvingthesums.But,forpurposesofunderstandingit,wecanalsoinsertournowknownresultsforthesummations,andanalyzeAsy.Var[b|x]=(3p/6)x(1/ZiXi2).Goingyetonemorestep,weshouldviewthisasbehavingthesameasAsy.Varfbl=(3p/0)x(1/n)x(n/ZiXi2)Asy.Varfblwhichbehavesthesameas二whichbehavesthesameas二(3p/9)x(1/n)x02/2,so,finally,wewoulduseAsy.Varfb]=3p9/(2n).so,finally,wewoulduseAsy.Varfb]=3p9/(2n).B.Wedidthisabove.B.Wedidthisabovealso.Thebonusinsightisthatthisisadirectapplicationofthatresult.Allofthelegworkforthispartwasdoneabovealso.Theendresultisthatbothestimatorsareconsistentsobothvariancesconvergetozero.But,whenyoutaketheratioofthevarianceoftheleastsquaresestimatortothevarianceoftheMLE,youfindthattheratiois3/2or1.5.ThatmeansthattheMLEis50%moreefficientthantheleastsquaresestimator.Itsabetteruseofthedata.WhathappenedtotheGaussMarkovtheorem?ItdoesnotapplyherebecausetheregressionmodelE[y|x]=Px,Var[y|x]=Pxdoesn'tsatisfytheconditionsofthetheorem.Gauss-Markovrequiresalldisturbancestohavethesamevariance,q2.PartIII.TOC\o"1-5"\h\zRegressionofyonx,noconstantterm.Estimatesp.+ +IOrdinaryleastsquaresregressionWeightingvariable=none|IDep.var.=Y Mean=1.720000000 ,S.D.= 1.837570860 |IModelsize:Observations= 25,Parameters= 1,Deg.Fr.= 24|IResiduals:Sumofsquares=27.73386709 ,Std.Dev.= 1.07498|IFit: R-squared=.657776,AdjustedR-squared= .65778|IModeltest:F[ 1, 24]= 46.13,Probvalue= .00000|IDiagnostic:Log-L= -36.7707,Restricted(b=0)Log-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 激光医疗行业现状与前景趋势报告
- 【八年级下册地理中图北京版】期中真题必刷卷B-【期中真题必刷卷】(北京专用)(解析版)
- 农村浇地合同(2篇)
- 出租车代班合同(2篇)
- 第21课 冷战后的世界格局(分层作业)(解析版)
- 班会课课件珍爱生命-预防溺水-主题班会
- 2025年中国左旋多巴行业市场发展监测及投资战略咨询报告
- 2024年度天津市公共营养师之二级营养师能力提升试卷B卷附答案
- 2024年度天津市公共营养师之三级营养师押题练习试卷B卷附答案
- 2024年度四川省公共营养师之三级营养师通关考试题库带答案解析
- 2024年01月北京房山沪农商村镇银行2024招考笔试历年参考题库附带答案详解
- 2024年南京市第一医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年度宠物用品销售代理合同范本3篇
- 期末模拟卷 2024-2025学年人教版数学六年级上册(含答案)
- GB/T 44351-2024退化林修复技术规程
- 《比特币完整介绍》课件
- 江苏省2023年生物小高考试题含答案解析
- 门诊手术室上墙职责、制度(共6页)
- 边坡土压力计算(主动土压力法)
- 钻孔压水试验计算EXCEL表格
- 机电安装项目施工组织计划方案
评论
0/150
提交评论