2023届江苏省连云港市高考冲刺押题(最后一卷)数学试卷(含答案解析)_第1页
2023届江苏省连云港市高考冲刺押题(最后一卷)数学试卷(含答案解析)_第2页
2023届江苏省连云港市高考冲刺押题(最后一卷)数学试卷(含答案解析)_第3页
2023届江苏省连云港市高考冲刺押题(最后一卷)数学试卷(含答案解析)_第4页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.2.若,则,,,的大小关系为()A. B.C. D.3.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.集合,则集合的真子集的个数是A.1个 B.3个 C.4个 D.7个5.在中,,则()A. B. C. D.6.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.已知为等比数列,,,则()A.9 B.-9 C. D.8.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,9.若实数满足不等式组,则的最大值为()A. B. C.3 D.210.设、,数列满足,,,则()A.对于任意,都存在实数,使得恒成立B.对于任意,都存在实数,使得恒成立C.对于任意,都存在实数,使得恒成立D.对于任意,都存在实数,使得恒成立11.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或12.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,则_________.14.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.15.若非零向量,满足,,,则______.16.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.18.(12分)设为坐标原点,动点在椭圆:上,该椭圆的左顶点到直线的距离为.(1)求椭圆的标准方程;(2)若椭圆外一点满足,平行于轴,,动点在直线上,满足.设过点且垂直的直线,试问直线是否过定点?若过定点,请写出该定点,若不过定点请说明理由.19.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.20.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.21.(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.22.(10分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】

求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【题目详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【答案点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.2.D【答案解析】因为,所以,因为,,所以,.综上;故选D.3.A【答案解析】

根据题意,可得几何体,利用体积计算即可.【题目详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【答案点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.4.B【答案解析】

由题意,结合集合,求得集合,得到集合中元素的个数,即可求解,得到答案.【题目详解】由题意,集合,则,所以集合的真子集的个数为个,故选B.【答案点睛】本题主要考查了集合的运算和集合中真子集的个数个数的求解,其中作出集合的运算,得到集合,再由真子集个数的公式作出计算是解答的关键,着重考查了推理与运算能力.5.A【答案解析】

先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【题目详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【答案点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.6.A【答案解析】

根据向量共线的性质依次判断充分性和必要性得到答案.【题目详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【答案点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.7.C【答案解析】

根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【题目详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【答案点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.8.B【答案解析】

根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【答案点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.9.C【答案解析】

作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【题目详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【答案点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.10.D【答案解析】

取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【题目详解】取,,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D.【答案点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.11.C【答案解析】

由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【题目详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.12.C【答案解析】

在等比数列中,由即可表示之间的关系.【题目详解】由题可知,等比数列中,且公比为2,故故选:C【答案点睛】本题考查等比数列求和公式的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.2【答案解析】

由得,算出,再代入算出即可.【题目详解】,,,,解得:,,则.故答案为:2【答案点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算.14.【答案解析】

以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【题目详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,,,设点,空间中的动点满足,,所以,整理得,,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【答案点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.15.1【答案解析】

根据向量的模长公式以及数量积公式,得出,解方程即可得出答案.【题目详解】,即解得或(舍)故答案为:【答案点睛】本题主要考查了向量的数量积公式以及模长公式的应用,属于中档题.16.0【答案解析】

利用等差中项以及等比数列的前项和公式即可求解.【题目详解】由,,是等差数列可知因为,所以,故答案为:0【答案点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)证明见解析.【答案解析】

(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【题目详解】(1),令,则,令得,当时,则在单调递减,当时,则在单调递增,所以,当时,,即,则在上单调递增,当时,,易知当时,,当时,,由零点存在性定理知,,不妨设,使得,当时,,即,当时,,即,当时,,即,所以在和上单调递增,在单调递减;(2)证明:构造函数,,,,整理得,,(当时等号成立),所以在上单调递增,则,所以在上单调递增,,这里不妨设,欲证,即证由(1)知时,在上单调递增,则需证,由已知有,只需证,即证,由在上单调递增,且时,有,故成立,从而得证.【答案点睛】本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.18.(1);(2)见解析【答案解析】

(1)根据点到直线的距离公式可求出a的值,即可得椭圆方程;(2)由题意M(x0,y0),N(x0,y1),P(2,t),根据,可得y1=2y0,由,可得2x0+2y0t=6,再根据向量的运算可得,即可证明.【题目详解】(1)左顶点A的坐标为(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴椭圆C的标准方程为+y2=1,(2)由题意M(x0,y0),N(x0,y1),P(2,t),则依题意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴•=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故过点N且垂直于OP的直线过椭圆C的右焦点F.【答案点睛】本题考查了椭圆方程的求法,直线和椭圆的关系,向量的运算,考查了运算求解能力和转化与化归能力,属于中档题.19.(1);(2).【答案解析】

(1)过作的垂线,垂足为,易得,进一步可得;(2)利用导数求得最大值即可.【题目详解】(1)如图,过作的垂线,垂足为,在直角中,,,所以,同理,.(2)设,则,令,则,即.设,且,则当时,,所以单调递减;当时,,所以单调递增,所以当时,取得极小值,所以.因为,所以,又,所以,又,所以,所以,所以,所以能通过此钢管的铁棒最大长度为.【答案点睛】本题考查导数在实际问题中的应用,考查学生的数学运算求解能力,是一道中档题.20.(1)见证明;(2)【答案解析】

(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.【题目详解】(1)证明:在等腰梯形,,易得在中,,则有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,设,,,,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,设平面的法向量为,由得,取,得,,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【答案点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题.21.(1)1.7;(2),见解析;(2)2.【答案解析】

(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由二项分布列的期望公式计算;(3)利用所给公式计算出回归直线即可解决

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论