版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Application-driven,energy-efficientcommunicationinwirelesssensornetworks
Severalsensornetworkapplicationsbasedondatadiffusionanddatamanagementcandeterminethecommunicationtransferratebetweentwosensorsbeforehand.Inthisframework,weconsidertheproblemofenergyefficientcommunicationamongnodesofawirelesssensornetworkandproposeanapplication-drivenapproachthatminimizesradioactivityintervalsandprolongsnetworklifetime.Onthebasisofpossiblecommunicationdelaysweestimatepacketarrivalintervalsatanyintermediatehopofafixed-ratedatapath.Westudyagenericstrategyofradioactivityminimizationwhereineachnodemaintainstheradioswitchedonjustintheexpectedpacketarrivalintervalsandguaranteeslowcommunicationlatency.Wedefineaprobabilisticmodelthatallowstheevaluationofthepacketlossprobabilitythatresultsfromthereducedradioactivity.Themodelcanbeusedtooptimallychoosetheradioactivityintervalsthatachieveacertainprobabilityofsuccessfulpacketdeliveryforaspecificradioactivitystrategy.Relyingontheprobabilisticmodelwealsodefineacostmodelthatestimatestheenergyconsumptionoftheproposedstrategies,underspecificsettings.Weproposethreespecificstrategiesandnumericallyevaluatetheassociatedcosts.WefinallyvalidateourworkwithasimulationmadewithTOSSIM(theBerkeleymotes’simulator).Thesimulationresultsconfirmthevalidityoftheapproachandtheaccuracyoftheanalyticmodels.ArticleOutline1.Introduction2.Relatedwork3.Scenario4.Communicationparadigm5.Probabilisticmodel5.1.Successandfailureprobabilities5.2.Costestimation6.Optimizationofthecostfunction7.Alternativestrategiesforw(i)7.1.Analysisofthestrategiesfix,lin,andmix8.Simulations9.ConclusionsHYPERLINKThechangingusageofamaturecampus-widewirelessnetwork
无线局域网络在数字化校园/社区/办公区旳创新应用校园无线通信网络及其产品市场开发WirelessLocalAreaNetworks(WLANs)arenowcommonplaceonmanyacademicandcorporatecampuses.As“Wi-Fi”technologybecomesubiquitous,itisincreasinglyimportanttounderstandtrendsintheusageofthesenetworks.Thispaperanalyzesanextensivenetworktracefromamature802.11WLAN,includingmorethan550accesspointsand7000usersoverseventeenweeks.Weemployseveralmeasurementtechniques,includingsyslogmessages,telephonerecords,SNMPpollingandtcpdumppacketcaptures.ThisisthelargestWLANstudytodate,andthefirsttolookatamatureWLAN.Wecomparethistracetoatracetakenafterthenetwork’sinitialdeploymenttwoyearsprior.WefoundthattheapplicationsusedontheWLANchangeddramatically,withsignificantincreasesinpeer-to-peerandstreamingmultimediatraffic.DespitetheintroductionofaVoiceoverIP(VoIP)systemthatincludeswirelesshandsets,ourstudyindicatesthatVoIPhasbeenusedlittleonthewirelessnetworkthusfar,andmostVoIPcallsaremadeonthewirednetwork.Wesawgreaterheterogeneityinthetypesofclientsused,withmoreembeddedwirelessdevicessuchasPDAsandmobileVoIPclients.Wedefineanewmetricformobility,the“sessiondiameter”.Weusethismetrictoshowthatembeddeddeviceshavedifferentmobilitycharacteristicsthanlaptops,andtravelfurtherandroamtomoreaccesspoints.Overall,usersweresurprisinglynon-mobile,withhalfremainingclosetohomeabout98%ofthetime.ArticleOutline1.Introduction2.Thetestenvironment2.1.VoiceoverIP2.2.Clientdevices3.Tracecollection3.1.Syslog3.2.SNMP3.3.Ethernetsniffers3.4.VoIPCDRdata3.5.Definitions3.6.Definingmobility4.Changes4.1.Clients4.2.Traffic5.Specificapplications5.1.VoIP5.2.Peer-to-peerapplications5.3.Streamingmedia6.Mobility7.Relatedwork8.Conclusionsandrecommendations8.1.FutureworkAcknowledgementsReferencesHYPERLINKCollaborativedatagatheringinwirelesssensornetworksusingmeasurementco-occurrence
并发性事件旳衡量/确认和信息协同化收集无线传感器网络技术与建设Wirelessadhocnetworksofbattery-poweredmicrosensors(WSNs)areproliferatingrapidlyandtransforminghowinformationisgatheredandprocessed,andhowweaffectourenvironment.Thelimitedenergyofthosesensorsposesthechallengeofusingsuchsystemsinanenergyefficientmannertoperformvariousactivities.AcommonactivityofmanyapplicationsofWSNsisthatofdatagathering:foreachtimestep,gatherthemeasurementfromeachsensortoabasestation.Oftenthereisredundancyand/ordependencyamongthesensormeasurements.Howtoidentifythedataredundancy/dependencyandutilizethemonimprovingenergyefficiencyofdatagatheringhasbeenoneoftheattractivetopics.Weproposeusingmeasurementco-occurrencetoidentifydataredundancyandanovelcollaborativedatagatheringapproachutilizingco-occurrencethatoffersatrade-offbetweenthecommunicationcostofdatagatheringversuserrorsatestimatingthesensormeasurementsatthebasestation.Akeytenantofourapproachistohavesensorswithco-occurringmeasurementsalternateintransmittingsuchco-occurringmeasurementstothebasestation,andhavingthebasestationmakeinferencesaboutthesensormeasurementsutilizingonlythedatatransmittedtoit.Wepresenttwoeffectivein-networkmethodsfordetectingco-occurrenceofmeasurements,aswellasasimpleandefficientprotocolforschedulingthetransmissionofthesensormeasurementstothebasestation.Weprovideexperimentalresultsonsyntheticandrealdatasetsshowingthattheproposedsystemofferssubstantial(upto65%)reductionofthecommunicationcostsofdatagatheringwithasmallnumberofmeasurementinferenceerrors(<6%)atthebasestation.ArticleOutline1.Introduction2.Estimatingco-occurrenceofsensormeasurements2.1.Measurementco-occurrence2.2.Estimatingtheresemblanceofoccurrencesets2.2.1.Positionalmin-wisehashing2.2.2.Randomprojection2.2.3.Mis-identificationerrors2.2.4.Elementsignatures3.Collaborativedatagatheringprotocolexploitingmeasurementsco-occurrence3.1.Analysisofthecostsoftheprotocol4.Experimentalevaluation4.1.Datasetsandperformancemetrics4.2.Experimentalresults–syntheticdatasets4.3.Experimentalresults–realdataset5.Relatedwork5.1.Setresemblanceestimation5.2.Collaborativedatagathering6.ConclusionAppendixAAppendixBAppendixC.
HYPERLINKDynamicend-to-endcapacityinIEEE802.16wirelessmeshnetworks
IEEE合同下无线网络旳动态端到端访问能力/容量TheIEEE802.16standarddefinesmeshmodeasoneofitstwooperationalmodesinmediumaccesscontrol(MAC).Inthemeshmode,peer-to-peercommunicationbetweensubscriberstations(SSs)isallowed,andtransmissionscanberoutedviaotherSSsacrossmultiplehops.InsuchanIEEE802.16meshnetwork,accurateandreliabledeterminationofdynamiclinkcapacityandend-to-endcapacityofagivenmulti-hoprouteiscrucialforrobustnetworkcontrolandmanagement.Thedynamiccapacitiesaredifficulttodetermineinadistributedsystemduetodecentralizedpacketschedulingandinterferencebetweencommunicatingnodescausedbythebroadcastnatureofradiopropagation.Inthispaper,wefirstproposeamethodforcomputingthedynamiclinkcapacitybetweentwomeshnodes,andextendthattodeterminethedynamicend-to-endcapacityboundsofamulti-hoproutebasedontheconceptofBottleneckZone.Thephysicaldeploymentsofnetworksarealsoconsideredinthecapacityestimation.Wedemonstratetheeffectivenessandaccuracyofourmethodsforcomputingdynamiclinkcapacityandend-to-endcapacityboundsthroughextensivesimulations.ArticleOutline1.Introduction2.OverviewofIEEE802.16meshmode3.LinkcapacityinIEEE802.16meshnetworks3.1.Transmissionschedulinginwirelessmeshnetworks3.2.Linkcapacitycomputation4.End-to-endcapacityinIEEE802.16wirelessmeshnetworks4.1.Concurrenttransmissionsingenericwirelessnetworks4.2.Definitions4.3.End-to-endcapacityboundsindensenetworksoroptimallydeployednetworkswithIEEE802.16meshconfiguration4.4.End-to-endcapacityboundsinrandomnetworkswithIEEE802.16meshconfiguration5.Simulationresults5.1.Optimaldeployment5.1.1.StringTopologies5.1.2.Regularmeshtopology5.2.Randomdeployment6.Relatedwork7.ConclusionsandfutureworkAcknowledgementsAppendixA.ProofofTheorem1AppendixB.ProofofTheorem2AppendixC.ProofofTheorem4ReferencesHYPERLINKVehiculartelematicsoverheterogeneouswirelessnetworks:Asurvey
Thisarticlepresentsasurveyonvehiculartelematicsoverheterogeneouswirelessnetworks.Anadvancedheterogeneousvehicularnetwork(AHVN)architectureisoutlinedwhichusesmultipleaccesstechnologiesandmultipleradiosinacollaborativemanner.ThechallengesindesigningtheessentialfunctionalcomponentsofAHVNandthecorrespondingprotocols(forradiolinkcontrol,routing,congestioncontrol,securityandprivacy,andapplicationdevelopment)arediscussedandtherelatedworkintheliteraturearereviewed.Theopenresearchchallengesandseveralavenuesforfutureresearchonvehiculartelematicsoverheterogeneouswirelessaccessnetworksareoutlined.ArticleOutline1.Introduction2.Vehiculartelematicapplicationsandrequirements3.AdvancedHeterogeneousVehicularNetwork(AHVN)architectureforvehiculartelematics3.1.Theaccesstechnologyoptions3.2.Theessentialfunctionalcomponentsandtheirlogicalrelations4.DesigningtheAHVNarchitecture:challengesandapproaches4.1.Selectionofaccessnetwork4.2.NetworkselectionVs.linkselectionVer-systemhandoff4.3.Hierarchicaldesign4.4.Operatingsystemandapplicationmanagement5.DesigningtheAHVNprotocols:challengesandapproaches5.1.Wirelessaccessstrategies5.2.MACprotocols5.2.1.MACProtocolsforV2RNetworks5.2.2.MACprotocolsforV2Vnetworks5.3.Datadisseminationprotocols5.4.Dataaggregationprotocols5.5.Routingprotocols5.6.Congestioncontrolprotocols5.6.1.Window-basedcongestioncontrolalgorithms5.6.2.Rate-basedcongestioncontrolalgorithms5.7.Cross-layerprotocoldesigninvehicularnetworks5.8.Securityprotocols5.8.1.PKI-basedarchitectures5.8.2.Hybridsecurityarchitecturesforvehicularnetworks5.8.3.Enhancingsecuritybydataaggregation,validation,andcorrection5.9.Privacyprotocols6.OpenissuesandresearchdirectionsAcknowledgementsHYPERLINKOptimizednetworkmanagementforenergysavingsofwirelessaccessnetworks
Theenergyconsumptionofwirelessaccessnetworksisrapidlyincreasingandinsomecountriesitamountsformorethan55%ofthewholecommunicationsectorandforanonnegligiblepartoftheoperationalcostsofmobileoperators.Thenewwirelesstechnologieswithagrowthofdataratesbyafactorofroughly10every5
yearsandtheincreaseinthenumberofusersresultinadoublingofthepowerconsumptionofcellularnetworksinfrastructureevery4–5years–to60
TWhin.Inthispaperweconsiderpossibleenergysavingsthroughoptimizedmanagementofon/offstateandtransmittedpowerofaccessstationsaccordingtotrafficestimatesindifferenthoursofthedayordaysoftheweek.WeproposeanoptimizationapproachbasedonsomeILPmodelsthatminimizesenergyconsumptionwhileensuringareacoverageandenoughcapacityforguaranteeingqualityofservice.Proposedmodelscapturesystemcharacteristicsconsideringdifferentmanagementconstraintsthatcanbeconsideredbasedontrafficrequirementsandapplicationscenarios.Energyminimizationproblemsaresolvedtotheoptimumorwithagaptotheoptimumoflessthan2.7%onasetofsyntheticinstancesthatarerandomlygenerated.Obtainedresultsshowthatremarkableenergysavings,uptomorethan50%,canbeobtainedwiththeproposedmanagementstrategies.ArticleOutline1.Introduction2.Relatedwork3.Powerconsumptionmodel3.1.APpowerconsumption3.2.Transmittedpowerandcoveragerange4.Networkandtrafficmodel4.1.Structureoftheservicearea4.2.Capacityloadestimation4.3.Trafficpatternfordifferenttimeperiods4.4.Modelingtrafficdistribution5.Energyconsumptionminimization5.1.Formulationofoptimizationmodels5.2.Basicenergyoptimizationmodel5.3.Modelingcompletecoverage5.4.Limitingconfigurationvariations5.5.Guaranteedpoweringofnetworkdevices6.Instancegeneratorandreferencemodels6.1.Generatorofinputdata6.2.Modelsforenergycomparison7.Numericalresults7.1.Resultsonsmallinstances7.2.Resultsonrealisticinstance7.3.Energysavings7.4.Furtherextensionsofthemodels8.ConclusionAcknowledgementsReferences无线网络安装部署旳优化管理与规划设计基于节能和可访问性旳角度HYPERLINKWirelesscommunicationsdeploymentinindustry:areviewofissues,optionsandtechnologies
ComputersinIndustryPresentbasisofknowledgemanagementistheefficientshareofinformation.Thechallengesthatmodernindustrialprocesseshavetofacearemultimediainformationgatheringandsystemintegration,throughlargeinvestmentsandadoptingnewtechnologies.Drivenbyanotablecommercialinterest,wirelessnetworkslikeGSMorIEEE802.11arenowthefocusofindustrialattention,becausetheyprovidenumerousbenefits,suchaslowcost,fastdeploymentandtheabilitytodevelopnewapplications.However,wirelessnetsmustsatisfyindustrialrequisites:scalability,flexibility,highavailability,immunitytointerference,securityandmanyothersthatarecrucialinhazardousandnoisyenvironments.Thispaperpresentsathoroughsurveyofallthisrequirements,reviewstheexistingwirelesssolutions,andexplorespossiblematchingbetweenindustryandthecurrentexistingwirelessstandards.1.Introduction2.Relatedwork3.Communicationsystemsinindustry3.1.Fieldlevel3.2.Industrialenvironmentrequirements3.3.Wirelessinindustry4.Wirelesstechnologysurvey4.1.Generaloverview4.2.Commonbenefitsofwirelessnetworks4.3.Problemsanddisadvantages4.4.Regulationissues4.4.1.Spectrumregulationissues4.4.2.Industrialandsecurityregulationissues4.4.3.Radiofrequencysafetyregulationissues4.5.Securityissues4.6.Radioemissionsissues4.6.1.Noiseandmediaeffectsoncommunications4.6.2.Environmentalimpact4.6.3.Healthissues4.7.NetworksTaxonomyandTechnologicaldescription4.7.1.Historicalpreview4.7.2.Cellulartelephonysystems.GSM.GPRSandEDGE.UMTS.Industrialapplicationsofcellularnetworks4.7.3.Localloopsubstitutes.LMDSandMMDS.IndustrialapplicationsofWLL4.7.4.Trunking.TETRA.IndustrialapplicationsofTETRA4.7.5.Indoorwirelesscommunications.DECT.IndustrialapplicationofDECT4.7.6.Wirelesslocalareanetworks.IEEE802.11andHIPERLAN4.7.7.WirelessPersonalAreaNetworks.Bluetooth,IEEE802.15andIrDA4.8.Complementarytechnologies4.8.1.RFTagssystems4.8.2.Positioningsystems5.Applicationsofwirelesssystemsinindustry5.1.Applicationscenarios5.1.1.Examplesofmanagementprocesses5.1.2.Examplesofproductionprocesses.Newapplicationscenario:ashipyard6.ConclusionsAcknowledgementsReferences无线通信网在工业、生产、物流、过控中旳应用调查:有关技术动态设备选型注意事项等HYPERLINKCapacityboundsofdeploymentconceptsforWirelessMeshNetworks
PerformanceEvaluationLocalareawirelessnetworksarelikecellularsystems:Stationsassociatetooneoutofseveralaccesspoints(APs),whichconnecttoawiredbackbone.Duetosignalattenuationandtransmissionpowerlimitations,radioconnectivityisavailableonlysufficientlyclosetoanAP.InscenarioswithadensedeploymentofAPsthewiredbackbonecausesunprofitablyhighcosts.AWirelessMeshNetwork(WMN)servestoextendthecoverageofAPsbymeansofMeshPoints(MPs)thatforwarddatabetweenastationandanAP.Thisconceptreducesdeploymentcosts,butreducesalsonetworkcapacity,owingtomultipletransmissionsofthesamedatapacketonitsmulti-hoproute.Thispaperanalyzeshowthecapacityofcost-limitedWMNscanbeoptimized.AlayeredmodelofaWMNspecifyingthetypicalcharacteristicsofthenetworkisusedtocalculatetheuppercapa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育领域中体育卫生工作的创新与实践
- 学校体育馆的品牌建设与市场推广
- 教育领域下的小学数学教学思维转变
- 小学生竞赛型学习环境创建研究
- 教育信息化背景下的师生互动创新
- 小学班主任教育管理能力培训课程设计
- 心理咨询在学生发展中的作用
- 教育科技公司的创业计划书制作攻略
- 2025年房产销售质押合同2篇
- 全国青岛版信息技术八年级下册专题青春岁月纪念册第3课二、《制作艺术字》说课稿
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 绿城物业室内公共区域清洁作业规程
- 封条模板A4直接打印版
- 危险货物道路运输企业安全检查通用清单
- 用友NC财务软件操作手册
- 眼内炎患者护理查房
- 电工维修培训资料 维修电工技术学习 维修电工常识 电工培训ppt课件
- 扑克牌24点练习题大全
评论
0/150
提交评论