



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.3.已知函数,,若存在实数,使成立,则正数的取值范围为()A. B. C. D.4.“角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的()A.6 B.7 C.8 D.95.设,满足,则的取值范围是()A. B. C. D.6.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.7.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势8.函数的图象大致是()A. B.C. D.9.已知非零向量,满足,,则与的夹角为()A. B. C. D.10.设函数恰有两个极值点,则实数的取值范围是()A. B.C. D.11.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.12.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设、满足约束条件,若的最小值是,则的值为__________.14.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.15.若向量满足,则实数的取值范围是____________.16.的二项展开式中,含项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.18.(12分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.19.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.20.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.21.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.22.(10分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.828
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
作出韦恩图,数形结合,即可得出结论.【题目详解】如图所示,,同时.故选:C.【答案点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.2.A【答案解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【题目详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【答案点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.3.A【答案解析】
根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【题目详解】函数,,由题意得,即,令,∴,∴在上单调递增,在上单调递减,∴,而,当且仅当,即当时,等号成立,∴,∴.故选:A.【答案点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.4.B【答案解析】
模拟程序运行,观察变量值可得结论.【题目详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出.故选:B.【答案点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.5.C【答案解析】
首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【题目详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【答案点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.6.B【答案解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【题目详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【答案点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.7.D【答案解析】
根据折线图依次判断每个选项得到答案.【题目详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【答案点睛】本题考查了折线图,意在考查学生的理解能力.8.C【答案解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【题目详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【答案点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.9.B【答案解析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【题目详解】根据平面向量数量积的垂直关系可得,,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【答案点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.10.C【答案解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【题目详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【答案点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.11.A【答案解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.12.D【答案解析】
根据统计数据,求出频率,用以估计概率.【题目详解】.故选:D.【答案点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【题目详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.14.【答案解析】
设:,:,利用点到直线的距离,列出式子,求出的值即可.【题目详解】解:由圆,可知圆心,半径为.设直线:,则:,圆心到直线的距离为,,.圆心到直线的距离为半径,即,并根据垂径定理的应用,可列式得到,解得.故答案为:.【答案点睛】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.15.【答案解析】
根据题意计算,解得答案.【题目详解】,故,解得.故答案为:.【答案点睛】本题考查了向量的数量积,意在考查学生的计算能力.16.【答案解析】
写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【题目详解】,由,可得.含项的系数为.故答案为:【答案点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)证明见解析【答案解析】
(1),①当时,,②两式相减即得数列的通项公式;(2)先求出,再利用裂项相消法求和证明.【题目详解】(1)解:,①当时,.当时,,②由①-②,得,因为符合上式,所以.(2)证明:因为,所以.【答案点睛】本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平.18.(1);(2).【答案解析】
(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.【题目详解】(1)如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则,设为平面的一个法向量,由得,取,则因为平面的一个法向量为由平面平面,得所以即.(2)设二面角的大小为,当平面的一个法向量为,综上,二面角的余弦值为.【答案点睛】本题考查用空间向量求平面间的夹角,平面与平面垂直的判定,二面角的平面角及求法,难度一般.19.(1)证明见解析(2)【答案解析】
(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【题目详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一个法向量,设面的法向量为,依题意,即,令,解得,所以,平面的法向量,,又因二面角为锐角,故二面角的余弦值为.【答案点睛】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题.20.(1);(2).【答案解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【题目详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【答案点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。21.(Ⅰ)详见解析;(Ⅱ).【答案解析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)解读 2
- 图木舒克职业技术学院《中级俄语》2023-2024学年第一学期期末试卷
- 新疆维吾尔自治区喀什二中2025届下学期高三物理试题第一次模拟考试试卷含解析
- 辽宁省四校联考2024-2025学年高三下学期第一次诊断性考试英语试题试卷含解析
- 南昌应用技术师范学院《专题口译》2023-2024学年第二学期期末试卷
- 江苏省南京市示范名校2025年高三第六次月考含解析
- 2025年广西安全员B证考试试题题库
- 台州科技职业学院《测量学实训》2023-2024学年第二学期期末试卷
- 天津开发区职业技术学院《模式识别技术》2023-2024学年第二学期期末试卷
- 2025年甘肃金昌市丝路众创网络科技有限公司招聘笔试参考题库含答案解析
- 09J202-1 坡屋面建筑构造(一)-1
- 小学生运动会安全教育课件
- 扁平足的症状与矫正方法
- 青春健康知识100题
- 员工考勤培训课件
- 危机处理与应急管理
- 国开电大操作系统-Linux系统使用-实验报告
- 黑臭水体监测投标方案(技术方案)
- 2023年高考生物全国通用易错题13致死类的遗传题(解析版)
- 四百字作文格子稿纸(可打印编辑)
- 中建项目装饰装修工程施工方案
评论
0/150
提交评论