2022年贵州省百校大联考高三最后一卷数学试卷含解析_第1页
2022年贵州省百校大联考高三最后一卷数学试卷含解析_第2页
2022年贵州省百校大联考高三最后一卷数学试卷含解析_第3页
2022年贵州省百校大联考高三最后一卷数学试卷含解析_第4页
2022年贵州省百校大联考高三最后一卷数学试卷含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.2.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.3.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点()A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变4.若复数(为虚数单位),则()A. B. C. D.5.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则()A.在点F的运动过程中,存在EF//BC1B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值6.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.7.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A. B. C. D.8.已知数列中,,(),则等于()A. B. C. D.29.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.10.下列函数中,在区间上为减函数的是()A. B. C. D.11.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切12.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种二、填空题:本题共4小题,每小题5分,共20分。13.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.14.已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于_____.15.已知函数,若,则实数的取值范围为__________.16.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.18.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.19.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.(1)求证:.(2)若,求二面角的余弦值.20.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.22.(10分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.2.D【解析】

根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.3.A【解析】

由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,,又,,又,,,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.4.B【解析】

根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.5.C【解析】

采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,//而与平面相交,故可知与平面相交,所以不存在EF//BC1B错误,如图,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由//,平面,平面所以//平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由//,平面,平面所以//平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.6.C【解析】

设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.7.B【解析】

根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,,不满足判断条件;第次循环:,,不满足判断条件;第次循环:,,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.8.A【解析】

分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),

…,

∴数列是以3为周期的周期数列,

故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.9.D【解析】

设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.10.C【解析】

利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.11.D【解析】

由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.12.B【解析】

根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.14.2【解析】

由题意知:,,,.由∠NRF=60°,可得为等边三角形,MF⊥PQ,可得F为HR的中点,即求.【详解】不妨设点P在第一象限,如图所示,连接MF,QF.∵抛物线C:y2=4x的焦点为F,准线为l,P为C上一点∴,.∵M,N分别为PQ,PF的中点,∴,∵PQ垂直l于点Q,∴PQ//OR,∵,∠NRF=60°,∴为等边三角形,∴MF⊥PQ,易知四边形和四边形都是平行四边形,∴F为HR的中点,∴,故答案为:2.【点睛】本题主要考查抛物线的定义,属于基础题.15.【解析】

画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【详解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为:【点睛】本题考查利用函数奇偶性及单调性解不等式.函数奇偶性的常用结论:(1)如果函数是偶函数,那么.(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.16.【解析】

利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为.【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】

(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.18.(1);(2)见解析【解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,,.所以,总金额的分布列如下表:03006009001200总金额的数学期望为元.19.(1)见解析(2)【解析】

(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角.【详解】(1)证明:连接,,.,,平面.平面,平面平面.,为的中点,.平面平面,平面.平面,.为斜边的中点,,(2),由(1)可知,为等腰直角三角形,则.以为坐标原点建立如图所示的空间直角坐标系,则,,,,则,记平面的法向量为由得到,取,可得,则.易知平面的法向量为.记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为.【点睛】本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角.在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论