版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.z.绝对值大全〔零点分段法、化简、最值〕一、去绝对值符号的几种常用方法解含绝对值不等式的根本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法一样。因此掌握去掉绝对值符号的方法和途径是解题关键。1利用定义法去掉绝对值符号根据实数含绝对值的意义,即||=,有||<;||>2利用不等式的性质去掉绝对值符号利用不等式的性质转化||<或||>(>0)来解,如||>(>0)可为>或<-;||<可化为-<+<,再由此求出原不等式的解集。对于含绝对值的双向不等式应化为不等式组求解,也可利用结论"≤||≤≤≤或-≤≤-〞来求解,这是种典型的转化与化归的数学思想方法。3利用平方法去掉绝对值符号对于两边都含有"单项〞绝对值的不等式,利用||=可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进展分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。4利用零点分段法去掉绝对值符号所谓零点分段法,是指:假设数,,……,分别使含有|-|,|-|,……,|-|的代数式中相应绝对值为零,称,,……,为相应绝对值的零点,零点,,……,将数轴分为+1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要表达了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于或(为正常数)类型不等式。对(或<),当||≠||时一般不用。二、如何化简绝对值绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内局部的正负,借以去掉绝对值符号的方法大致有三种类型。〔一〕、根据题设条件例1:设化简的结果是〔
〕。〔A〕〔B〕
〔C〕
〔D〕思路分析:由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解:∴应选〔B〕.归纳点评
只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.〔二〕、借助数轴例2:实数a、b、c在数轴上的位置如下图,则代数式的值等于〔
〕.〔A〕
〔B〕
〔C〕
〔D〕思路分析
由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解:原式∴应选〔C〕.归纳点评
这类题型是把条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能沉着自如地解决问题了.〔三〕、采用零点分段讨论法例3:化简思路分析
本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于*是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解:令得零点:;令得零点:,把数轴上的数分为三个局部〔如图〕①当时,∴
原式②当时,,∴原式③当时,,∴
原式∴归纳点评:虽然的正负不能确定,但在*个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点〔不一定是两个〕.2.分段:根据第一步求出的零点,将数轴上的点划分为假设干个区段,使在各区段内每个绝对值符号内的局部的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨
千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.三、带绝对值符号的运算
在初中数学教学中,如何去掉绝对值符号?因为这一问题看似简单,所以往往容易被人们无视。其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题。则,如何去掉绝对值符号呢?我认为应从以下几个方面着手:〔一〕、要理解数a的绝对值的定义。在中学数学教科书中,数a的绝对值是这样定义的,"在数轴上,表示数a的点到原点的距离叫做数a的绝对值。〞学习这个定义应让学生理解,数a的绝对值所表示的是一段距离,则,不管数a本身是正数还是负数,它的绝对值都应该是一个非负数。〔二〕、要弄清楚怎样去求数a的绝对值。从数a的绝对值的定义可知,一个正数的绝对值肯定是它的本身,一个负数的绝对值必定是它的相反数,零的绝对值就是零。在这里要让学生重点理解的是,当a是一个负数时,怎样去表示a的相反数〔可表示为"-a〞〕,以及绝对值符号的双重作用〔一是非负的作用,二是括号的作用〕。〔三〕、掌握初中数学常见去掉绝对值符号的几种题型。1、对于形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。当a>0时,︱a︱=a(性质1:正数的绝对值是它本身);当a=0时,︱a︱=0(性质2:0的绝对值是0);当a<0时;︱a︱=–a(性质3:负数的绝对值是它的相反数)。2、对于形如︱a+b︱的一类问题首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号进展化简。当a+b>0时,︱a+b︱=(a+b)=a+b(性质1:正数的绝对值是它本身);当a+b=0时,︱a+b︱=(a+b)=0(性质2:0的绝对值是0);当a+b<0时,︱a+b︱=–(a+b)=–a-b(性质3:负数的绝对值是它的相反数)。3、对于形如︱a-b︱的一类问题同样,仍然要把a-b看作一个整体,判断出a-b的3种情况,根据绝对值的3个性质,去掉绝对值符号进展化简。但在去括号时最容易出现错误。如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可〔不管正负〕。因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=〔a-b〕=a-b,︱b-a︱=〔a-b〕=a-b。口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。4、对于数轴型的一类问题,根据3的口诀来化简,更快捷有效。如︱a-b︱的一类问题,只要判断出a在b的右边〔不管正负〕,便可得到︱a-b︱=〔a-b〕=a-b,︱b-a︱=〔a-b〕=a-b。5、对于绝对值符号前有正、负号的运算非常简单,去掉绝对值符号的同时,不要忘记打括号。前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!6、对于绝对值号里有三个数或者三个以上数的运算
万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比拟,大于0直接去绝对值号,小于0的整体前面加负号。四、去绝对值化简专题练习〔1〕
设化简的结果是〔
B
〕。〔A〕
〔B〕
〔C〕
〔D〕(2)
实数a、b、c在数轴上的位置如下图,则代数式的值等于〔
C〕。〔A〕
〔B〕
〔C〕
〔D〕(3)
,化简的结果是*-8。(4)
,化简的结果是-*+8。(5)
,化简的结果是-3*。(6)a、b、c、d满足且,则a+b+c+d=0〔提示:可借助数轴完成〕(7)假设,则有〔
A
〕。〔A〕
〔B〕
〔C〕
〔D〕(8)有理数a、b、c在数轴上的位置如下图,则式子化简结果为〔
C
〕.〔A〕
〔B〕
〔C〕
〔D〕(9)有理数a、b在数轴上的对应点如下图,则以下四个式子,中负数的个数是〔B
〕.〔A〕0
〔B〕1
〔C〕2
〔D〕3(10)化简=(1)-3*(*<-4)(2)-*+8(-4≤*≤2)(3)3*(*>2)(11)设*是实数,以下四个结论中正确的选项是〔
D
〕。〔A〕y没有最小值〔B〕有有限多个*使y取到最小值〔C〕只有一个*使y取得最小值〔D〕有无穷多个*使y取得最小值五、绝对值培优教案绝对值是初中代数中的一个根本概念,是学习相反数、有理数运算及后续二次根式的根底.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程〔组)、解不等(组)、函数中距离等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l.绝对值的代数意义:2.绝对值的几何意义从数轴上看,表示数的点到原点的距离(长度,非负);表示数、数的两点间的距离.3.绝对值根本性质①非负性:;②;③;④.培优讲解〔一〕、绝对值的非负性问题【例1】假设,则。总结:假设干非负数之和为0,。〔二〕、绝对值中的整体思想【例2】,且,则=.变式1.假设|m-1|=m-1,则m_______1;假设|m-1|>m-1,则m_______1;〔三〕、绝对值相关化简问题〔零点分段法〕【例3】阅读以下材料并解决有关问题:我们知道,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得〔称分别为与的零点值〕。在有理数范围内,零点值和可将全体有理数分成不重复且不遗漏的如下3种情况:〔1〕当时,原式=;〔2〕当时,原式=;〔3〕当时,原式=。综上讨论,原式=通过以上阅读,请你解决以下问题:分别求出和的零点值;〔2〕化简代数式变式1.化简(1);(2);变式2.的最小值是,的最大值为,求的值。〔四〕、表示数轴上表示数、数的两点间的距离.【例4】〔距离问题〕观察以下每对数在数轴上的对应点间的距离4与,3与5,与,与3.并答复以下各题:〔1〕你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___.〔2〕假设数轴上的点A表示的数为*,点B表示的数为―1,则A与B两点间的距离可以表示为______________.〔3〕结合数轴求得的最小值为,取得最小值时*的取值范围为___.〔4〕满足的的取值范围为______.假设的值为常数,试求的取值范围.〔五〕、绝对值的最值问题【例5】〔1〕当取何值时,有最小值?这个最小值是多少?〔2〕当取何值时,有最大值?这个最大值是多少?〔3〕求的最小值。〔4〕求的最小值。【例6】.,设,求M的最大值与最小值.课后练习:1、假设与互为相反数,求的值。2.假设与互为相反数,则与的大小关系是().A.B.C.D.3.数轴上的三点A、B、C分别表示有理数,1,一l,则表示().A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和4.利用数轴分析,可以看出,这个式子表示的是到2的距离与到的距离之和,它表示两条线段相加:⑴当时,发现,这两条线段的和随的增大而越来越大;⑵当时,发现,这两条线段的和随的减小而越来越大;⑶当时,发现,无论在这个范围取何值,这两条线段的和是一个定值,且比⑴、⑵情况下的值都小。因此,总结,有最小值,即等于到的距离5.利用数轴分析,这个式子表示的是到的距离与到1的距离之差它表示两条线段相减:⑴当时,发现,无论取何值,这个差值是一个定值;⑵当时,发现,无论取何值,这个差值是一个定值;⑶当时,随着增大,这个差值渐渐由负变正,在中点处是零。因此,总结,式子当时,有最大值;当时,有最小值;9.设,,则的值是〔〕.A.-3B.1C.3或-1D.-3或110
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 意略明京东健康2024布局黄金赛道击破核心靶点-从多维视角出发的偏头痛行业机会洞察报告
- 中考语文一轮复习:议论文知识清单及训练
- 市政工程技术专业毕业论文08486
- 洛阳2024年统编版小学5年级英语第3单元真题
- 生活现象之热现象(二)-2023年中考物理重难点题型专项突破
- 2023年磨边轮资金筹措计划书
- 强化和改进思想政治-2019年范文
- 2024年AG13电喷汽车发动机项目资金需求报告代可行性研究报告
- 2024年航空地面试验设备项目投资申请报告代可行性研究报告
- 【苏科】期末模拟卷01【第1-5章】
- 金刚萨埵修法如意宝珠修学完整版(含详解)
- MOOC 马克思主义民族理论与政策-广西民族大学 中国大学慕课答案
- 2024年安徽法院聘用制书记员招聘笔试参考题库附带答案详解
- 光伏运维技能大赛考试题库及答案
- 2024年广东广州市花都空港经济发展有限公司招聘笔试参考题库附带答案详解
- 术后患者功能性便秘的原因分析及护理措施
- 2024广东佛山市三水海江怡乐建设投资有限公司招聘笔试参考题库附带答案详解
- 印刷服务印刷清单一览表
- 2024年人事行政行业培训资料
- 2024年云南省第一次高中毕业生复习统一检测(一模)文科综合试卷(含官方答案)
- 《认识隶书(一)》名师课件
评论
0/150
提交评论