![集成电路设计 07 时序逻辑设计课件_第1页](http://file4.renrendoc.com/view/e5cc568afaef7427af8d9228eb6cfd02/e5cc568afaef7427af8d9228eb6cfd021.gif)
![集成电路设计 07 时序逻辑设计课件_第2页](http://file4.renrendoc.com/view/e5cc568afaef7427af8d9228eb6cfd02/e5cc568afaef7427af8d9228eb6cfd022.gif)
![集成电路设计 07 时序逻辑设计课件_第3页](http://file4.renrendoc.com/view/e5cc568afaef7427af8d9228eb6cfd02/e5cc568afaef7427af8d9228eb6cfd023.gif)
![集成电路设计 07 时序逻辑设计课件_第4页](http://file4.renrendoc.com/view/e5cc568afaef7427af8d9228eb6cfd02/e5cc568afaef7427af8d9228eb6cfd024.gif)
![集成电路设计 07 时序逻辑设计课件_第5页](http://file4.renrendoc.com/view/e5cc568afaef7427af8d9228eb6cfd02/e5cc568afaef7427af8d9228eb6cfd025.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集成电路设计第七章
时序逻辑电路设计 DesigningSequentialLogicCircuits1EIS-WuhanUniversity集成电路设计第七章时序逻辑电路设计1EIS-WuhanU纲要基本概念组合逻辑与时序逻辑电路有限状态机(FSM)LatchversusRegister锁存器寄存器动态锁存器/寄存器时钟控制寄存器C2MOS流水线非双稳态时序电路时序问题2EIS-WuhanUniversity纲要基本概念2EIS-WuhanUniversityLogicCircuits:
(1)CombinationalLogic (2)SequentialLogic7-1基本概念
3EIS-WuhanUniversityLogicCircuits:7-1基本概念
3EISItismemoryless;i.e.,withoutstates.CombinationalCircuitsInputOutputCombinationalLogic
4EIS-WuhanUniversityItismemoryless;CombinationalCombinationalLogicDesignProcedures1.Constructthetruthtable2.Basedonthetruthtable (a)Simplifythelogicandimplementby (i)randomlogicgates (ii)multiplexers (iii)PLA’sorPAL’s (b)ImplementthecircuitbyROM’s5EIS-WuhanUniversityCombinationalLogicDesignPro——SequentialLogicSequentialLogicAsynchronousCircuitsSynchronousCircuits6EIS-WuhanUniversity——SequentialLogicSequentialLDuetothetimedelayproblems(races,hazards,…etc.)peoplerarelydesignsequentialcircuitsinasynchronousapproach.Synchronouscircuitsneedasystemclocktostrobethewholesystem.Itiseasiertocontroltheinputsandstates.Thespeedmaybeslowerinthesynchronouscircuits.7EIS-WuhanUniversityDuetothetimedelayproblemsCombinationalLogicclockOutputsStateRegistersNextStateCurrentStateInputsDQFiniteStateMachine(FSM)8EIS-WuhanUniversityCombinationalclockOutputsStateExternalinputsandstatesastheinputsOutputs,andNextstateClock,edgesensitive(positiveornegative)MealyversusMoorestatemachines9EIS-WuhanUniversityExternalinputsandstatesasMooremachineFF—Flip-Flop
outputdependsonlyonthecurrentstateZ=f(y)potentialimplementationadvantagesinspeedandsize;initialstateFFCombinationalLogicYyXZCLK10EIS-WuhanUniversityMooremachineFFCombinationalMealymachineboththeinputandthecurrentstateisusedtodeterminetheoutput
Z=f(x,y) Y=f(x,y)XyCombinationalCircuitsFFCLKZY11EIS-WuhanUniversityMealymachineXyCombinationalCSixDesign-StepProcessesforFSM1.Understandthestatementofthespecification2.ObtainanabstractspecificationoftheFSM3.Performastateminimization4.Performstateassignment5.ChooseFFtypestoimplementFSMstateregister6.ImplementtheFSM12EIS-WuhanUniversitySixDesign-StepProcessesforStaticvsDynamicStorageStaticstoragepreservestateaslongasthepowerisonhavepositivefeedback(regeneration)withaninternalconnectionbetweentheoutputandtheinputusefulwhenupdatesareinfrequent(clockgating)Dynamicstoragestorestateonparasiticcapacitorsonlyholdstateforshortperiodsoftime(milliseconds)requireperiodicrefreshusuallysimpler,sohigherspeedandlowerpower13EIS-WuhanUniversityStaticvsDynamicStorageStatiLatchesvsFlipflopsLatcheslevelsensitivecircuitthatpassesinputstoQwhentheclockishigh(orlow)-transparentmodeinputsampledonthefallingedgeoftheclockisheldstablewhenclockislow(orhigh)-holdmodeFlipflops(edge-triggered)一般指触发器edgesensitivecircuitsthatsampletheinputsonaclocktransitionpositiveedge-triggered:01
negativeedge-triggered:10builtusinglatches(e.g.,master-slaveflipflops)14EIS-WuhanUniversityLatchesvsFlipflopsLatches14ELatchversusRegisterLatch storesdatawhenclockislowRegister storesdatawhenclockrisesDClkQClkDQDClkQClkDQTransparent15EIS-WuhanUniversityLatchversusRegisterLatchRegi7-2锁存器(Latches)类型Latch-BasedDesign时间定义与约束改变输出多路开关型锁存器16EIS-WuhanUniversity7-2锁存器(Latches)类型16EIS-Wuhan类型17EIS-WuhanUniversity类型17EIS-WuhanUniversityLatch-BasedDesign—forsequentialNlatchistransparent
whenf=0Platchistransparent
whenf=1PLatchLogicLogicNLatchf18EIS-WuhanUniversityLatch-BasedDesign—forsequen时间定义(TimingDefinitions)tCLKtDtc-qtholdtsutQDATASTABLEDATASTABLERegisterCLKDQtsuSetup建起时间——时钟翻转之前数据必须有效的时间;thold维持时间——时钟触发之后数据仍然有效的时间;tc-q传播延迟时间——CLK到Q19EIS-WuhanUniversity时间定义(TimingDefinitions)tCLKtCharacterizingTimingRegisterLatchClkDQtC-QClkDQtC-QtD-Q20EIS-WuhanUniversityCharacterizingTimingRegisterL约束(SystemTimingConstraints)约束1: 最小时钟周期:Ttc-q+tplogic+tsu一个CLK周期必须容纳任何一级电路的最大延迟时间tplogicCombinationalLogicclockOutputsStateRegistersNextStateCurrentStateInputsT(clockperiod)21EIS-WuhanUniversity约束(SystemTimingConstraints)约约束2寄存器维持时间:tholdtcd-register+tcd-logic
tholdtcd-register寄存器最小传播延迟cd---ContaminationDelaytcd-logic逻辑电路最小传播延迟保证时序元件的输入数据在CLK边沿之后能够维持足够的时间,不会因为新进入的数据流而过早改变。tCLKtDtc-qtholdtsutQDATASTABLEDATASTABLERegisterCLKDQ22EIS-WuhanUniversity约束2寄存器维持时间:tholdtCLKtDtc-qtholPositiveFeedback:Bi-Stabilitycascadedinverters23EIS-WuhanUniversityPositiveFeedback:Bi-StabilitVTCVo1Vi25Vo1Vi25Vo1Vi1ACBVo2Vi1=Vo2Vo1Vi2Vi2=Vo1Ifthegaininthetransientregionislargerthan1,onlyAandBarestableoperationpoints.Cisameta-stableoperationpoint.24EIS-WuhanUniversityVTCVo1Vi25Vo1Vi25Vo1Vi1ACBVo2VMeta-StabilityGainshouldbelargerthan1inthetransitionregion====25EIS-WuhanUniversityMeta-StabilityGainshouldbelBistableCircuits(flip-flops)改变输出cuttingthefeedbackloop(muxbasedlatch)overpoweringthefeedbackloop(asusedinSRAMs)Vi1Vi226EIS-WuhanUniversityBistableCircuits(flip-flopsWritingintoaStaticLatchDCLKCLKDConvertingintoaMUXForcingthestate(canimplementasNMOS-only)Usetheclockasadecouplingsignal,thatdistinguishesbetweenthetransparentandopaquestates弱输出27EIS-WuhanUniversityWritingintoaStaticLatchDCL多路开关型锁存器
(Mux-BasedLatches)Negativelatch(transparentwhenCLK=0)Positivelatch(transparentwhenCLK=1)CLK10DQ0CLK1DQ28EIS-WuhanUniversity多路开关型锁存器
(Mux-BasedLatches)NeMux-BasedLatch传输阶段(透明)维持阶段29EIS-WuhanUniversityMux-BasedLatch传输阶段(透明)29EISMux-BasedLatchNMOSonlyNon-overlappingclocks30EIS-WuhanUniversityMux-BasedLatchNMOSonlyNon-ov7-3寄存器主从式边沿触发寄存器降低时钟负载非理想时钟—时钟重叠静态RS触发器—强信号写数据31EIS-WuhanUniversity7-3寄存器主从式边沿触发寄存器31EIS-WuhanUMaster-Slave(Edge-Triggered)RegisterTwooppositelatchestriggeronedgeAlsocalledmaster-slavelatchpair
32EIS-WuhanUniversityMaster-Slave(Edge-Triggered)Master-SlaveRegisterMultiplexer-basedlatchpair33EIS-WuhanUniversityMaster-SlaveRegisterMultiplex多路开关型寄存器的时序特性寄存器时序参数SetupTime,HoldTime,PropagationDelayassume:反相器传播延迟:tinv传输门传播延迟:tTGClkinverter:
tclk-int=0tCLKtDtc-qtholdtsutQDATASTABLEDATASTABLERegisterCLKDQ34EIS-WuhanUniversity多路开关型寄存器的时序特性寄存器时序参数tCLKtDtc-qTimingofRegisterSetupTimeData在Clk上升沿前必须有效的时间—QM稳定时间传播路径:Inv1—
TG1—
Inv3—
TG2Tsetup=
3tinv+tTGPropagationDelayTc-q—
QM传播到输出的时间传播路径:TG3—
Inv6Tc-q=tTG+tinvHoldTimeClk上升沿之后输入必须保持稳定的时间TG1关断Thold=
035EIS-WuhanUniversityTimingofRegisterSetupTime35CharacterizingTimingRegisterLatchClkDQtC-QClkDQtC-QtD-Q36EIS-WuhanUniversityCharacterizingTimingRegisterL降低时钟负载(ReducedClockLoad)设计复杂性提高(I2、I4强度)反向传导(可能影响前级存储结果)37EIS-WuhanUniversity降低时钟负载(ReducedClockLoad)设时钟偏差(ClockSkew)
——时钟重叠(ClockOverlap)CLKCLKAB(a)Schematicdiagram(b)OverlappingclockpairsXDQCLKCLKCLKCLK时钟变为上升沿时,从级应为维持状态;由于时钟重叠,D与Q之间形成直接通路;产生竞争:A同时被D、B驱动;减弱B的强度;输出不确定状态。clkskew产生原因?38EIS-WuhanUniversity时钟偏差(ClockSkew)
——时钟重叠(Clo伪静态两相D寄存器——不重叠时钟两相时钟;时间间隔足够长;伪静态—保持时间长,漏电影响;不会产生重叠。CLK1CLK1ABXDQCLK2CLK2CLK2CLK139EIS-WuhanUniversity伪静态两相D寄存器——不重叠时钟两相时钟;CLK1CLK1A静态RS触发器—强信号写数据(OverpoweringtheFeedbackLoop
─Cross-CoupledPairs)NOR-basedset-reset40EIS-WuhanUniversity静态RS触发器—强信号写数据(OverpoweringthCross-CoupledNANDCross-coupledNANDsAddedclockThisisnotusedindatapathsanymore,
butisabasicbuildingmemorycell41EIS-WuhanUniversityCross-CoupledNANDCross-couple7-4动态锁存器/寄存器DCLKCLKQDynamic(charge-based)StaticStorageMechanisms42EIS-WuhanUniversity7-4动态锁存器/寄存器DCLKCLKQDynamic(StaticvsDynamicStorageStaticstoragepreservestateaslongasthepowerisonhavepositivefeedback(regeneration)withaninternalconnectionbetweentheoutputandtheinputusefulwhenupdatesareinfrequent(clockgating)Dynamicstoragestorestateonparasiticcapacitorsonlyholdstateforshortperiodsoftime(milliseconds)requireperiodicrefreshusuallysimpler,sohigherspeedandlowerpower43EIS-WuhanUniversityStaticvsDynamicStorageStati动态边沿触发寄存器CLKCLKQDCLKCLKSetupTime传播路径:TG1Tsetup=tTG
PropagationDelay传播路径:Inv1—TG2—Inv3Tc-q=tTG+2tinv
HoldTimeThold=044EIS-WuhanUniversity动态边沿触发寄存器CLKCLKQDCLKCLKSetupTMakingaDynamicLatchPseudo-Static针对噪声干扰和漏电影响;伪静态—弱反馈;增加延时,提高抗干扰能力。45EIS-WuhanUniversityMakingaDynamicLatchPseudo-7-5时钟控制寄存器C2MOS
——时钟偏差不敏感方法“Keepers”canbeaddedtomakecircuitpseudo-static主从式;正沿触发;CLK=0时X=D求值,从级维持(高阻态);CLK=1时相反。只要时钟边沿的上升和下降时间足够小,对时钟重叠不敏感。46EIS-WuhanUniversity7-5时钟控制寄存器C2MOS
——时钟偏差不敏感方InsensitivetoClock-OverlapM1DQM4M200VDDXM5M8M6VDD(a)(0-0)overlapM3M1DQM21VDDXM71M5M6VDD(b)(1-1)overlap47EIS-WuhanUniversityInsensitivetoClock-OverlapM17-6真单相时钟寄存器
(TrueSinglePhaseClockRegister)Negativelatch(transparentwhenCLK=0)Positivelatch(transparentwhenCLK=1)无时钟重叠;减少时钟负载。48EIS-WuhanUniversity7-6真单相时钟寄存器
(TrueSinglePhasIncludingLogicinTSPCANDlatchExample:logicinsidethelatch可嵌入逻辑功能。49EIS-WuhanUniversityIncludingLogicinTSPCANDlatTSPCRegisterCLK=0X=反相的D,Y预充电,Q维持;CLK=1X高阻,Y=X的反相,Q=Y。50EIS-WuhanUniversityTSPCRegisterCLK=050EIS-WuhanPulse-TriggeredLatchesMaster-SlaveLatchesDClkQDClkQClkDataDClkQClkDataPulse-TriggeredLatchL1L2LWaystodesignanedge-triggeredsequentialcell:51EIS-WuhanUniversityPulse-TriggeredLatchesMaster-PulsedLatches52EIS-WuhanUniversityPulsedLatches52EIS-WuhanUniv7-7流水线(Pipelining)ReferencePipelined寄存器传播延迟寄存器建立时间组合逻辑最坏延迟53EIS-WuhanUniversity7-7流水线(Pipelining)ReferencePiLatch-BasedPipeline54EIS-WuhanUniversityLatch-BasedPipeline54EIS-Wuha7-8非双稳态时序电路
Non-BistableSequentialCircuitsSchmittTriggerMonostableTriggerAstableMultivibratorsVCO55EIS-WuhanUniversity7-8非双稳态时序电路
Non-BistableSequSchmittTrigger对于缓慢的输入,快速翻转的输出响应;VTC正向、负向变化的输入信号有不同的阈值;滞回电压为其差;用于提高抗干扰能力,减少振铃现象。InOutVinVoutVOHVOLVM–VM+56EIS-WuhanUniversitySchmittTrigger对于缓慢的输入,快速翻转的输出NoiseSuppressionusingSchmittTrigger57EIS-WuhanUniversityNoiseSuppressionusingSchmitCMOSSchmittTriggerMovesswitchingthresholdofthefirstinverter反相器等效晶体管比:β1/(β
2+β
4)开关阈值提高反相器等效晶体管比:(β
1+β
3)/β2开关阈值降低58EIS-WuhanUniversityCMOSSchmittTriggerMovesswitMultivibratorCircuitsBistableMultivibratorMonostableMultivibratorAstableMultivibratorflip-flop,SchmittTriggerone-shotoscillatorSRT59EIS-WuhanUniversityMultivibratorCircuitsBistableTransition-TriggeredMonostableDELAYtdInOuttd60EIS-WuhanUniversityTransition-TriggeredMonostablMonostableTrigger(RC-based)VDDInOutABCRInBOuttVMt2t1(a)Triggercircuit.(b)Waveforms.61EIS-WuhanUniversityMonostableTrigger(RC-based)VAstableMultivibrators(Oscillators)RingOscillator奇数个反相器T=2N*tpsimulatedresponseof5-stageoscillator012N-162EIS-WuhanUniversityAstableMultivibrators(OscillRelaxationOscillator—弛缓Out2CROut1IntI1I2T=2(log3)RCanoscillatorinwhichacapacitorischargedgraduallyandthendischargedrapidly63EIS-WuhanUniversityRelaxationOscillator—弛缓Out2CRVoltageControllerOscillator(VCO)InVDDM3M1M2M4M5VDDM6VcontrCurrentstarvedinverterIrefIrefSchmittTriggerrestoressignalslopesVcontr
(V)0.0246tpHL
(nsec)propagationdelayasafunctionofcontrolvoltage64EIS-WuhanUniversityVoltageControllerOscillatorDifferentialDelayElementandVCOin2twostageVCOv1v2v3v4VctrlVo2Vo1in1delaycell
simulatedwaveformsof2-stageVCO0.50.00.51.01.52.02.53.020.51.5V1V2V3V4time(ns)2.53.565EIS-WuhanUniversityDifferentialDelayElementand7-9时序问题
——数据路径(Datapath)设计基本问题时序逻辑静态与动态存储同步/异步时钟偏差与抖动来源时钟偏差时钟抖动时钟分布网络时钟技术设计准则66EIS-WuhanUniversity7-9时序问题
——数据路径(Datapath)设计基本Review:SequentialDefinitions寄存器两个电平触发latches
ofoppositetypemaster-slavechangesstateonaclockedge67EIS-WuhanUniversityReview:SequentialDefinitionStaticstorage——Dynamicstorage
Staticstorage双稳态——bistable反馈——withfeedbacktostoreitsstate保持——preservesstateaslongasthepowerison更新数据cuttingthefeedbackpath(muxbased);overpoweringthefeedbackpath(SRAMbased)Dynamicstorage寄生电容——parasiticcapacitorsonlyaperiodoftime(milliseconds)刷新——periodicrefreshfewertransistorshigherspeedlowerpower伪静态pseudostaticduetonoise68EIS-WuhanUniversityStaticstorage——DynamicstoragTimingClassifications同步系统(Synchronoussystems)所有存储单元同步更新使用同步clocksignalstrictconstraintsontheclocksignalgenerationanddistributiontominimize时钟偏差Clockskew(spatialvariationsinclockedges)时钟抖动Clockjitter(temporalvariationsinclockedges)异步系统(Asynchronoussystems)自定时Self-timedsystems不需要全局时钟globallydistributedclock握手协议控制handshaking69EIS-WuhanUniversityTimingClassifications同步系统(SynSynchronousTimingBasicsUnderidealconditions(i.e.,whentclk1=tclk2)Ttc-q+tplogic+tsuthold
≤tcdlogic+tcdregUnderrealconditionsskewisconstantfromcycletocycleskewcanbepositiveornegativejittercausesTtochangeonacycle-by-cyclebasisDQR1CombinationallogicDQR2clkIntclk1tclk2tc-q,tsu,thold,tcdregtplogic,tcdlogic70EIS-WuhanUniversitySynchronousTimingBasicsUnderSourcesofClockSkewandJitterinClockNetworkPLL1243567clockgenerationclockdriverspowersupplyinterconnectcapacitiveloadcapacitivecouplingtemperatureSkewmanufacturingdevicevariationsinclockdriversinterconnectvariationsenvironmentalvariations(powersupplyandtemperature)Jitterclockgenerationcapacitiveloadingandcouplingenvironmentalvariations(powersupplyandtemperature)71EIS-WuhanUniversitySourcesofClockSkewandJittPositiveClockSkew>0:Improvesperformance,butmakestholdhardertomeet.Iftholdisnotmet(raceconditions).T+
tc-q+tplogic+tsusoTtc-q+tplogic+tsu-thold+≤tcdlogic+tcdregsothold≤tcdlogic+tcdreg-DQR1CombinationallogicDQR2clkIntclk1tclk2delayTT+>0+thold123472EIS-WuhanUniversityPositiveClockSkew>0:ImprNegativeClockSkewClockanddataflowinoppositedirectionsT+
tc-q+tplogic+tsusoTtc-q+tplogic+tsu-thold+≤tcdlogic+tcdregsothold≤tcdlogic+tcdreg-DQR1CombinationallogicDQR2clkIntclk1tclk2delayTT+<01234<0:Degradesperformance,butthold
iseasiertomeet73EIS-WuhanUniversityNegativeClockSkewClockanddClockJitterJittercausesTtovaryonacycle-by-cyclebasisR1CombinationallogicclkIntclkT-tjitter+tjitterT-2tjitter
tc-q+tplogic+tsuTtc-q+tplogic+tsu+2tjitterJitterdirectlyreducestheperformanceofasequentialcircuit74EIS-WuhanUniversityClockJitterJittercausesTtoCombinedImpactofSkewandJitterConstraintsontheminimumclockperiod(>0)DQR1CombinationallogicDQR2Intclk1tclk2TT+>01612-tjitterTtc-q+tplogic+tsu-+2tjitter
thold≤tcdlogic+tcdreg––2tjitter75EIS-WuhanUniversityCombinedImpactofSkewandJiClockDistributionNetworksClockskewandjitter影响性能消耗能量dynamicpower应支持时钟控制clockgating(shuttingdownunits)时钟分布技术ClockdistributionBalancedpaths(H-treenetwork,matchedRCtrees)Intheidealcase,caneliminateskewCouldtakemultiplecyclesfortheclocksignaltopropagatetotheleavesofthetreeClockgridsTypicallyusedinthefinalstageoftheclockdistributionnetworkMinimizesabsolutedelay(notrelativedelay)76EIS-WuhanUniversityClockDistributionNetworksCloH-TreeClockNetworkClockClockIdleconditionGatedclockIfthepathsareperfectlybalanced,clockskewiszero;Caninsertclockgatingatmultiplelevelsinclocktree;Canshutoffentiresubtreeifallgatingconditionsaresatisfied.77EIS-WuhanUniversityH-TreeClockNetworkClockClockDECAlpha21164(EV5)300MHzclock(9.3milliontransistorsona16.5x18.1mmdiein0.5micronCMOStechnology)singlephaseclock3.75nFtotalclockloadExtensiveuseofdynamiclogic20W(outof50)inclockdistributionnetworkTwolevelclockdistributionSingle6stagedriveratthecenterofthechipSecondarybuffersdrivetheleftandrightsidesoftheclockgridinm3andm4Totalequivalentdriversize(宽度)of58cm!!78EIS-WuhanUniversityDECAlpha21164(EV5)300MHzc79EIS-WuhanUniversity79EIS-WuhanUniversityClockSkewinAlphaProcessorAbsoluteskewsmallerthan90psThecriticalinstructionandexecutionunitsallseetheclockwithin65ps80EIS-WuhanUniversityClockSkewinAlphaProcessorADealingwithClockSkewandJitterTominimizeskew,balanceclockpathsusingH-treeormatched-treeclockdistributionstructures.Ifpossible,routedataandclockinoppositedirections;eliminatesracesatthecostofperformance.Theuseofgatedclockstohelpwithdynamicpowerconsumptionmakejitterworse.Shieldclockwires(routepowerlines–VDDorGND–nexttoclocklines)tominimize/eliminatecouplingwithneighboringsignalnets.改善层间绝缘介质一致性Usedummyfillstoreduceskewbyreducingvariationsininterconnectcapacitancesduetointerlayerdielectricthicknessvariations.Powersupplynoisefundamentallylimitstheperformanceofclocknetworks.81EIS-WuhanUniversityDealingwithClockSkewandJi集成电路设计第七章
时序逻辑电路设计 DesigningSequentialLogicCircuits82EIS-WuhanUniversity集成电路设计第七章时序逻辑电路设计1EIS-WuhanU纲要基本概念组合逻辑与时序逻辑电路有限状态机(FSM)LatchversusRegister锁存器寄存器动态锁存器/寄存器时钟控制寄存器C2MOS流水线非双稳态时序电路时序问题83EIS-WuhanUniversity纲要基本概念2EIS-WuhanUniversityLogicCircuits:
(1)CombinationalLogic (2)SequentialLogic7-1基本概念
84EIS-WuhanUniversityLogicCircuits:7-1基本概念
3EISItismemoryless;i.e.,withoutstates.CombinationalCircuitsInputOutputCombinationalLogic
85EIS-WuhanUniversityItismemoryless;CombinationalCombinationalLogicDesignProcedures1.Constructthetruthtable2.Basedonthetruthtable (a)Simplifythelogicandimplementby (i)randomlogicgates (ii)multiplexers (iii)PLA’sorPAL’s (b)ImplementthecircuitbyROM’s86EIS-WuhanUniversityCombinationalLogicDesignPro——SequentialLogicSequentialLogicAsynchronousCircuitsSynchronousCircuits87EIS-WuhanUniversity——SequentialLogicSequentialLDuetothetimedelayproblems(races,hazards,…etc.)peoplerarelydesignsequentialcircuitsinasynchronousapproach.Synchronouscircuitsneedasystemclocktostrobethewholesystem.Itiseasiertocontroltheinputsandstates.Thespeedmaybeslowerinthesynchronouscircuits.88EIS-WuhanUniversityDuetothetimedelayproblemsCombinationalLogicclockOutputsStateRegistersNextStateCurrentStateInputsDQFiniteStateMachine(FSM)89EIS-WuhanUniversityCombinationalclockOutputsStateExternalinputsandstatesastheinputsOutputs,andNextstateClock,edgesensitive(positiveornegative)MealyversusMoorestatemachines90EIS-WuhanUniversityExternalinputsandstatesasMooremachineFF—Flip-Flop
outputdependsonlyonthecurrentstateZ=f(y)potentialimplementationadvantagesinspeedandsize;initialstateFFCombinationalLogicYyXZCLK91EIS-WuhanUniversityMooremachineFFCombinationalMealymachineboththeinputandthecurrentstateisusedtodeterminetheoutput
Z=f(x,y) Y=f(x,y)XyCombinationalCircuitsFFCLKZY92EIS-WuhanUniversityMealymachineXyCombinationalCSixDesign-StepProcessesforFSM1.Understandthestatementofthespecification2.ObtainanabstractspecificationoftheFSM3.Performastateminimization4.Performstateassignment5.ChooseFFtypestoimplementFSMstateregister6.ImplementtheFSM93EIS-WuhanUniversitySixDesign-StepProcessesforStaticvsDynamicStorageStaticstoragepreservestateaslongasthepowerisonhavepositivefeedback(regeneration)withaninternalconnectionbetweentheoutputandtheinputusefulwhenupdatesareinfrequent(clockgating)Dynamicstoragestorestateonparasiticcapacitorsonlyholdstateforshortperiodsoftime(milliseconds)requireperiodicrefreshusuallysimpler,sohigherspeedandlowerpower94EIS-WuhanUniversityStaticvsDynamicStorageStatiLatchesvsFlipflopsLatcheslevelsensitivecircuitthatpassesinputstoQwhentheclockishigh(orlow)-transparentmodeinputsampledonthefallingedgeoftheclockisheldstablewhenclockislow(orhigh)-holdmodeFlipflops(edge-triggered)一般指触发器edgesensitivecircuitsthatsampletheinputsonaclocktransitionpositiveedge-triggered:01
negativeedge-triggered:10builtusinglatches(e.g.,master-slaveflipflops)95EIS-WuhanUniversityLatchesvsFlipflopsLatches14ELatchversusRegisterLatch storesdatawhenclockislowRegister storesdatawhenclockrisesDClkQClkDQDClkQClkDQTransparent96EIS-WuhanUniversityLatchversusRegisterLatchRegi7-2锁存器(Latches)类型Latch-BasedDesign时间定义与约束改变输出多路开关型锁存器97EIS-WuhanUniversity7-2锁存器(Latches)类型16EIS-Wuhan类型98EIS-WuhanUniversity类型17EIS-WuhanUniversityLatch-BasedDesign—forsequentialNlatchistransparent
whenf=0Platchistransparent
whenf=1PLatchLogicLogicNLatchf99EIS-WuhanUniversityLatch-BasedDesign—forsequen时间定义(TimingDefinitions)tCLKtDtc-qtholdtsutQDATASTABLEDATASTABLERegisterCLKDQtsuSetup建起时间——时钟翻转之前数据必须有效的时间;thold维持时间——时钟触发之后数据仍然有效的时间;tc-q传播延迟时间——CLK到Q100EIS-WuhanUniversity时间定义(TimingDefinitions)tCLKtCharacterizingTimingRegisterLatchClkDQtC-QClkDQtC-QtD-Q101EIS-WuhanUniversityCharacterizingTimingRegisterL约束(SystemTimingConstraints)约束1: 最小时钟周期:Ttc-q+tplogic+tsu一个CLK周期必须容纳任何一级电路的最大延迟时间tplogicCombinationalLogicclockOutputsStateRegistersNextStateCurrentStateInputsT(clockperiod)102EIS-WuhanUniversity约束(SystemTimingConstraints)约约束2寄存器维持时间:tholdtcd-register+tcd-logic
tholdtcd-register寄存器最小传播延迟cd---ContaminationDelaytcd-logic逻辑电路最小传播延迟保证时序元件的输入数据在CLK边沿之后能够维持足够的时间,不会因为新进入的数据流而过早改变。tCLKtDtc-qtholdtsutQDATASTABLEDATASTABLERegisterCLKDQ103EIS-WuhanUniversity约束2寄存器维持时间:tholdtCLKtDtc-qtholPositiveFeedback:Bi-Stabilitycascadedinverters104EIS-WuhanUniversityPositiveFeedback:Bi-StabilitVTCVo1Vi25Vo1Vi25Vo1Vi1ACBVo2Vi1=Vo2Vo1Vi2Vi2=Vo1Ifthegaininthetransientregionislargerthan1,onlyAandBarestableoperationpoints.Cisameta-stableoperationpoint.105EIS-WuhanUniversityVTCVo1Vi25Vo1Vi25Vo1Vi1ACBVo2VMeta-StabilityGainshouldbelargerthan1inthetransitionregion====106EIS-WuhanUniversityMeta-StabilityGainshouldbelBistableCircuits(flip-flops)改变输出cuttingthefeedbackloop(muxbasedlatch)overpoweringthefeedbackloop(asusedinSRAMs)Vi1Vi2107EIS-WuhanUniversityBistableCircuits(flip-flopsWritingintoaStaticLatchDCLKCLKDConvertingintoaMUXForcingthestate(canimplementasNMOS-only)Usetheclockasadecouplingsignal,thatdistinguishesbetweenthetransparentandopaquestates弱输出108EIS-WuhanUniversityWritingintoaStaticLatchDCL多路开关型锁存器
(Mux-BasedLatches)Negativelatch(transparentwhenCLK=0)Positivelatch(transparentwhenCLK=1)CLK10DQ0CLK1DQ109EIS-WuhanUniversity多路开关型锁存器
(Mux-BasedLatches)NeMux-BasedLatch传输阶段(透明)维持阶段110EIS-WuhanUniversityMux-BasedLatch传输阶段(透明)29EISMux-BasedLatchNMOSonlyNon-overlappingclocks111EIS-WuhanUniversityMux-BasedLatchNMOSonlyNon-ov7-3寄存器主从式边沿触发寄存器降低时钟负载非理想时钟—时钟重叠静态RS触发器—强信号写数据112EIS-WuhanUniversity7-3寄存器主从式边沿触发寄存器31EIS-WuhanUMaster-Slave(Edge-Triggered)RegisterTwooppositelatchestriggeronedgeAlsocalledmaster-slavelatchpair
113EIS-WuhanUniversityMaster-Slave(Edge-Triggered)Master-SlaveRegisterMultiplexer-basedlatchpair114EIS-WuhanUniversityMaster-SlaveRegisterMultiplex多路开关型寄存器的时序特性寄存器时序参数SetupTime,HoldTime,PropagationDelayassume:反相器传播延迟:tinv传输门传播延迟:tTGClkinverter:
tclk-int=0tCLKtDtc-qtholdtsutQDATASTABLEDATASTABLERegisterCLKDQ115EIS-WuhanUniversity多路开关型寄存器的时序特性寄存器时序参数tCLKtDtc-qTimingofRegisterSetupTimeData在Clk上升沿前必须有效的时间—QM稳定时间传播路径:Inv1—
TG1—
Inv3—
TG2Tsetup=
3tinv+tTGPropagationDelayTc-q—
QM传播到输出的时间传播路径:TG3—
Inv6Tc-q=tTG+tinvHoldTimeClk上升沿之后输入必须保持稳定的时间TG1关断Thold=
0116EIS-WuhanUniversityTimingofRegisterSetupTime35CharacterizingTimingRegisterLatchClkDQtC-QClkDQtC-QtD-Q117EIS-WuhanUniversityCharacterizingTimingRegisterL降低时钟负载(ReducedClockLoad)设计复杂性提高(I2、I4强度)反向传导(可能影响前级存储结果)118EIS-WuhanUniversity降低时钟负载(ReducedClockLoad)设时钟偏差(ClockSkew)
——时钟重叠(ClockOverlap)CLKCLKAB(a)Schematicdiagram(b)OverlappingclockpairsXDQCLKCLKCLKCLK时钟变为上升沿时,从级应为维持状态;由于时钟重叠,D与Q之间形成直接通路;产生竞争:A同时被D、B驱动;减弱B的强度;输出不确定状态。clkskew产生原因?119EIS-WuhanUniversity时钟偏差(ClockSkew)
——时钟重叠(Clo伪静态两相D寄存器——不重叠时钟两相时钟;时间间隔足够长;伪静态—保持时间长,漏电影响;不会产生重叠。CLK1CLK1ABXDQCLK2CLK2CLK2CLK1120EIS-WuhanUniversity伪静态两相D寄存器——不重叠时钟两相时钟;CLK1CLK1A静态RS触发器—强信号写数据(OverpoweringtheFeedbackLoop
─Cross-CoupledPairs)NOR-basedset-reset121EIS-WuhanUniversity静态RS触发器—强信号写数据(OverpoweringthC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技与生态的结合-智能绿植在老房装修中的应用
- 疫情背景下如何通过线上方式优化家庭关系以维护心理健康
- 山地墓地旅游景观的规划与设计原则
- 智慧医疗创业项目风险评估报告保障患者安全
- 2025年度租赁房屋装修施工合同模板版
- 二零二五年度装修合同纠纷预防与处理专家合同
- 2025年度个人税务筹划与遗产规划顾问服务合同
- 2025年度解除租赁合同中的房屋租赁保证金退还流程范本
- 2025年度版个人雇佣合同协议书:教育行业专业教师及教研人员雇佣协议
- 2025年度汽车运输线路承包与保险服务合同
- 2024-2025学年广东省深圳市南山区监测数学三年级第一学期期末学业水平测试试题含解析
- 广东2024年广东金融学院招聘专职辅导员9人笔试历年典型考点(频考版试卷)附带答案详解
- DB31∕731-2020 船舶修正总吨单位产品能源消耗限额
- 2024年卫生专业技术资格考试卫生检验技术(初级(师)211)相关专业知识试题及答案指导
- 《手卫生知识培训》培训课件
- 江苏省南京鼓楼区2024年中考联考英语试题含答案
- 【2022届高考英语读后续写】主题升华积累讲义及高级句型积累
- 环境监测的基本知识
- 西方法律思想史ppt
- 世界古代史-对接选择性必修 高考历史一轮复习
- 金锁记优秀课件
评论
0/150
提交评论