




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
章数学中蕴涵的美学思想
节数学美的涵义节数学美的特征退出一、数学家论数学美二、数学美的涵义一、简单美二、对称美三、和谐美四、奇异美章数学中蕴涵的美学思想
节数学美的涵义节数学美的特征退出一第三节
让学生感受数学美
第四节
数学美在中国的源头
一、美观---外在的美二、美好---内在的美三、美妙---快乐的美四、完美---
至善至美一、太极八卦---中国象数学的美二、河图洛书—数学形式美的雏形第三节让学生感受数学美第四节数学美在中国的源头一、美第一节
数学美的涵义一、数学家论数学美
古希腊的哲学家、数学家普洛克拉斯(Proelus)断言:“哪里有数,哪里就有美。”
古希腊著名学者毕达哥拉斯(Pythagoras)对数学有很深的造诣,其中毕氏定理(勾股定理)就是他的杰作,他认为“万物最基本的元素是数,数的和谐---这就是美。”返回第一节数学美的涵义一、数学家论数学美古希腊的哲
庞加莱:“数学家们十分重视他们的方法和理论是否十分优美,这并非华而不实的作风,那么到底是什么使我们感到一个解答、一个证明优美呢?那就是各个部分之间的和谐、对称、恰到好处的平稳。”
克莱因:“数学是人类最高超的智力成就,也是人类灵魂最独特的创造。音乐能激发或挠慰情怀,绘画能使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。”
高斯:“去寻求一种最美和最简洁的证明,乃是吸引我研究的主要动力。”返回庞加莱:“数学家们十分重视他们的方法和理论是
数学美是数学科学的本质力量的感性和理性的显现,是一种人的本质力量通过宜人的数学思维结构的呈现。它是自然美的客观反映,是科学美的核心。
二、数学美的涵义返回数学美是数学科学的本质力量的感性和理性的显现,第二节数学美的特征
一、
简单美
简单是指数学语言、符号、方法、逻辑结构和理论体系的简单。
1.符号简单符号是书写数学语言的文字,大数学家克莱因说:“符号常常比发明它们的数学家更能推理”,人们总是探索用简单的符号去表现复杂的数学内容。例如,微积分学中的常用符号:返回第二节数学美的特征一、简单美简单是指数学语言、符号、又如,哈密顿微分算子符号向量场函数v=v1i+v2j+v3k,
(vi是x,y,z的函数)▽v=()(v1i+v2j+v3k)
返回数量场函数u(x,y,z)时,产生梯度又如,哈密顿微分算子符号向量场函数返回数量场函数u(x,y,拉普拉斯方程:若用哈密顿算子表示,也十分漂亮、利落:
▽u·▽u=0返回拉普拉斯方程:若用哈密顿算子表示,也十分漂亮、利落:返回在线性方程组表示为AX=B返回在线性方程组表示为在埃及出土的三千六百年前的莱因特纸草上有下面一串符号用今天的符号表示即:宋、元时期我国也开始了相当于现在“方程论”的研究,当时记数使用的是“算筹”,的记号来表示二次三项式
412x2-x+136其中x系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”。返回在埃及出土的三千六百年前的莱因特纸草上有下面一串符号用今天的16世纪,数学家卡当、韦达等人对方程符号有了改进,直到笛卡尔才第一个倡用x,y,z表示未知数。他曾用
xxx-9xx+26-24∝0表示方程
x3-9x2+26-24=0
这个演变过程就是对简单美的追求过程。返回16世纪,数学家卡当、韦达等人对方程符号有了改进,直到笛卡尔
如果要具体写出圆周率或欧拉常数根本不可能,然而用数学符号却能精确地表示它们。有些数及其运算只有用符号表示,才能更精确、更完美。例如,圆周率是一个常数,1737年欧拉首先倡导用希腊字母π来表示它,且通用全世界;也是欧拉用e表示特殊的无理常数─欧拉常数返回如果要具体写出圆周率或欧拉常数根本不可能,然2.形式简单
艺术家们追求的美中,形式美是其中特别重要的内容,他们在渲染美时,常常运用不同形式,如泰山的雄伟,华山的险峻,黄山的奇特,峨眉的秀丽,青海的幽深,滇池的开阔等。数学家们也十分注重数学的形式美,美国数学家柏克提出了一个公式
审美度=即人们对数学的审美感受程度,与数学表现出的秩序成正比,与数学表现出的复杂性成反比。因此,按审美度要求,数学的表现形式越简单就越美。返回2.形式简单艺术家们追求的美中,形式美是其中特别重要的内格林公式斯托克斯公式返回格林公式斯托克斯公式返回空间解析几何中
椭球
椭圆抛物面
它们不仅便于记忆,而且具有形式美。
返回空间解析几何中椭球椭圆抛物面它们不仅便于记忆,而且具3.语言简单数学的简单美表现在语言上使人回味无穷。
如“负负得正”;“对顶角相等”;“实数集不可数”;
“角、边、角”;“边、角、边”等。数列极限
函数极限
导数概念
返回3.语言简单数学的简单美表现在语言上使人回味无穷。如4.方法简单
数学中的许多简单有效的判定定理,形式优美的表达方式,并不是原本固有的,而是经过人们长期比较、筛选的结果。
例如,对于正项级数的收敛性判别,达朗贝尔判别法(比值法)与柯西判别法(根式法)都是十分简单有效的判别法,然而它们都有一个共同的不足,就是不能判别当极限值时级数的敛散性,于是人们不断地给出了许多其他形式的判别法。比达朗贝尔判别法更精细的是拉贝(Laber)判别法
设
则当r>1时,级数收敛;
当r<1时,级数发散。返回4.方法简单数学中的许多简单有效的判定定理,形式优美事实上,由达朗贝尔判别法:设级数满足级数收敛级数发散
不确定收敛;返回事实上,由达朗贝尔判别法:设级数满足级数收敛级数发散不确收敛;发散;敛散性不确定。
凡是用达氏法能判别的级数敛散性,用拉贝法也能判别,因此,拉贝法比达氏法更精细。返回收敛;发散;敛散性不确定。凡是用达氏法能判别的比拉贝判别法更精细的是库麦尔(Kummer)判别法,其中{Cn}适合条件:级数发散。
设则当k>0时,级数收敛;当k<0时,级数发散。
返回事实上,当时,库麦尔判别法即为拉贝判别法。比拉贝判别法更精细的是库麦尔(Kummer)判别法,其中{拉格朗日型余项简单整齐,易于记忆,使用方便。从审美度而言拉格朗日型余项是最美的,因此受到人们的青睐。
然而,人们在应用泰勒公式时,最习惯使用的还是拉格朗日型余项
其中在x与x0
之间。返回
又如,泰勒公式的余项,局部性的有皮亚诺(Peano)余项,整体性的有施诺米尔奇(Schlomilch)─罗赫(Roche)余项,柯西余项和拉格朗日余项等。在整体性余项中,后两种余项仅是前一种余项的特例。因而,从整体性考虑,前一种余项更完美。
拉格朗日型余项简单整齐,易于记忆,使用方便。从审美度而言拉格二、
对称美
对称是指图形或数式的对称,概念、命题、法则或结构的对偶、对应、对逆等。1.形式对称
解析几何中的标准图形
返回二、对称美对称是指图形或数式的对称,概念、命题、法则代数中的二项式定理:对称行列式:
对称矩阵:返回代数中的二项式定理:对称行列式:对称矩阵:返微积分中空间曲线L:x=x(t),y=y(t),z=z(t)的切线方程
空间曲面S:F(x,y,z)=0的法线方程
==导数的运算法则
返回微积分中空间曲线L:x=x(t),y=y(t),2.关系对称
运算的对称:加与减、乘与除、乘方与开方、指数与对数、微分与积分、矩阵与逆矩阵等;
概念的对称:函数与反函数、奇与偶、单增与单减、连续与间断、收级与发散等;
命题的对称:严格单减。
返回2.关系对称运算的对称:加与减、乘与除、乘方与开方“共轭”关系对称性:
共轭无理数
共轭矩阵
共轭积分返回“共轭”关系对称性:共轭无理数“对偶”关系对称性:
集合中的对偶关系
线性规划中的对偶关系
线性规划问题:
(*)返回“对偶”关系对称性:集合中的对偶关系线性规划中的对偶关系对偶规划问题:
(**)
由对偶定理知,若线性规划问题(*)有最优解,则其对偶规划问题(**)也有最优解,且两问题的目标函数最优值相等。反之也成立。返回返回对偶规划问题:(**)由对偶定理知,若线性规划问题3.对称美方法的运用
对称美方法是数学中的锐利武器,数学家们利用它揭示和发现了很多数学中的奥秘,其中最典型的有麦克斯韦方程、笛沙格定理和伽罗瓦群等,它被著名数学家狄拉克(Dirac)称为“自然科学时代新方法的精华”。下面仅以求积分为例,来说明它的妙用。(1)利用积分区间的对称性
利用积分区间关于原点的对称性和被积函数的奇偶性,简化定积分的计算,是积分运算中最常用的一种方法。
若积分区间不关于原点对称,或积分区间虽然关于原点对称,但被积函数是非奇非偶函数,有时通过适当的换元或拆项等方法也可转化为对称区间上的积分问题。返回3.对称美方法的运用对称美方法是数学中的例1求
(n为自然数)。令,则可将积分化为对称区间。
返回例1求(2)利用函数图象的对称性
借助积分中函数图象的对称性,获得简捷的解题途径,这是对称美方法的又一妙用。
例2设C为对称于坐标轴的平面光滑闭曲线,证明
易知积分与路径无关。设D为曲线C围成的平面闭区域,则由格林公式返回(2)利用函数图象的对称性借助积分中函数图象的对因为积分域D关于x轴对称,又y3
是奇函数,同理,所以(3)利用轮换对称性
根据研究问题中解析式结构的对称性,由一个结论迅速地得出相似结论,这不仅能缩减冗长繁琐的计算或证明过程,而且给人以对称美的享受。例3计算
椭球的外表面。
返回因为积分域D关于x轴对称,又y3是奇函数,同理,所以(3)作广义极坐标变换
,则
返回作广义极坐标变换,用轮换对称法,即得
于是
返回用轮换对称法,即得于是返回(4)挖掘潜在的对称关系
有的问题从表面上看,似乎与对称无关。但如果仔细分析,寻找潜在的对称关系,从而将问题转化为对称问题,就能很快找到突破口,使问题迎刃而解。例4计算
若直接令,则会导致错误结论。
因为
f(x)=在[0,]上的原函数不是初等函数,
所以不能用一般定积分的方法来计算。
返回(4)挖掘潜在的对称关系有的问题从表面上看,似乎与于是寻找有无对称点,容易发现
即在区间[0,]上横坐标关于的任意两个对称点x与相应的函数值关于也对称,
故
返回于是寻找有无对称点,容易发现即在区间[0,(5)构造对称关系
有些数学问题,原来并不具有对称性,在解题过程中,如果善于根据问题的特点,构造出某种对称关系,便能使问题很快得到解决。例5计算其中D为y=1,x=-1所围成的区域,f是一连续函数。
积分区域不具有对称性,作曲线,
将D分成D1,D2两部分,返回(5)构造对称关系有些数学问题,原来并不具有对称性于是D1与D2
分别关于y轴和x轴对称。
又因为是x或y的奇函数,所以=0
从上述解题过程中都放射出对称美思想的光芒,正如德国数学家外尔(Weyl)所说:“美和对称紧密相关”。返回于是D1与D2分别关于y轴和x轴对称。又因为是x或y的奇三、和谐美
数学中的和谐美是指数学内容与内容之间、内容与形式之间、部分与整体之间存在着内在的联系或共同规律,从而形成本质上的严谨与统一。和谐指事物之间具有匀称、有序、明确的变化规律。1.严谨是和谐的基础
数学的严谨自然显现出它的和谐。为了追求严谨,消除数学中的不和谐因素,数学家们一直在努力。数学史上所谓的“数学危机”正是某些数学理论不和谐所致。
返回三、和谐美数学中的和谐美是指数学内容与内容之间、内第一次危机---无理数的诞生。
第二次危机------实数理论得以建立,导致集合论的诞生。第三次数学危机------“罗素悖论”和其它悖论的产生,为了避免悖论,策梅洛(Zermelo)在1908年提出了一种公理系统,后经弗兰克尔(Fraenkel)在1921年加以改进,形成了目前公认的彼此无矛盾的公理系统,简称ZF公理系统。函数的连续性,是当今数学中的一个重要基本概念,然而它的现代定义的形成,也经历了一个从不和谐到和谐的漫长过程。18世纪,数学家欧拉认为,由一个单独表达式给出的函数是连续的,而由几个表达式给出的函数是不连续的。例如,欧拉函数返回第一次危机---无理数的诞生。第二次危机------实数理是不连续的,而由两个分支组成的双曲线(反比例函数),因为它是由一个表达式给出的,就认为它是连续的。19世纪,傅立叶证明:定义在某个区间上的任意函数可表示成该区间上的正弦与余弦的无穷级数。比如,返回是不连续的,而由两个分支组成的双曲线(反比例函数),19世纪可表示为
这样一来,上述函数依照欧拉的见解既不是连续的,同时又是连续的。
1821年,柯西对“连续”概念重新叙述,直至1850年魏尔斯特拉斯给出“”形式的定义,才使得“连续”这一概念有了新的解释。2.统一是和谐的标志
统一是指数学中内容与内容之间、内容与形式之间、章节与章节之间客观存在的相互联系。
返回可表示为这样一来,上述函数依照欧拉的见解既不是连续的解析几何中,引入极坐标之后,椭圆、双曲线、抛物线统一于公式平面上的二次曲线方程
由于系数A,B,C,…,F不同,其形态万千,但是欧拉通过坐标变换,将它们化为下面九种标准形状:返回解析几何中,引入极坐标之后,椭圆、双曲线、抛物线统一于公式(双曲线)(两虚直线相交)(虚椭圆)(椭圆)返回(双曲线)(两虚直线相交)(虚椭圆)(椭圆)返(两重合直线)(两平行虚直线)(两平行直线)(抛物线)(两相交直线)返回(两重合直线)(两平行虚直线)(两平行直线)(抛
在积分学中,不定积分与定积分是两个切然不同的概念,但在微积分基本公式之中得到和谐统一,从而极大地推动了微积分的应用与发展。
定积分、重积分、曲线积分和曲面积分,它们表述的实际意义各不相同,但却都统一于黎曼积分之中。
各类积分之间都有着内在联系:返回在积分学中,不定积分与定积分是两个切然不同的概念,但在二重积分三重积分Ⅰ型曲线积分Ⅰ型曲面积分Ⅱ型曲线积分Ⅱ型曲面积分定积分返回二重积分三重积分Ⅰ型曲线积
四、奇异美
奇异指数学中的方法、结论或有关发展出乎意料,使人既惊奇又赞赏与折服。
徐利治先生说:“奇异是一种美,奇异到极度更是一种美。”
在数学史上曾吸引人们广泛关注的有“蝴蝶定理”。
1815年,数学家奥纳首先解决了这个问题的证明。但由于它优美的外形及包含的深刻内涵,引起了人们广泛的兴趣,100多年来研究者众多,给出了不少初等与高等的证明,其中被公认为最奇妙的证明是1973年由斯特温等人给出的。
返回四、奇异美奇异指数学中的方法、结论或有关发展出乎证明:由图所示,圆内共有四对相等的角。
设
PM=x,MQ=y,AM=MB=a,则有
化简得
返回证明:由图所示,圆内共有四对相等设PM=x,MQ由相交弦定理知
故有
因x,y都大于0,上式仅在x=y,即PM=MQ时成立。
上述证明中没有添加任何辅助线,证明过程简明、匀称,好优美漂亮!
返回由相交弦定理知故有因x,y都大于0,上式仅在x=高等数学中这种“离经叛道”的奇异现象,随处可见。
比如,人们长期以为,周期函数一定存在最小正周期,然而狄利克雷函数是周期函数,但不存在最小正周期。
实数轴上的有理点与无理点都是处处稠密的,然而无理点却比有理点多得多。
洛比达(L’Hospital)法则是求未定式极限的锐利武器,但它对极限返回高等数学中这种“离经叛道”的奇异现象,随处可见。却无能为力。
在不定积分中,有些看上去非常简单的函数,却“积”不出来:
在欧拉公式
代入
,得
真叫人拍案叫绝,人们把这5个常数戏称为数学中的“五朵金花”。
返回却无能为力。在不定积分中,有些看上去非常简单的函数
对于n!,人们长期认为除了表示1,2,3,…,n这n个连续自然数的乘积外,再没有别的意义。但在微积分中根据嘎玛函数Г()的递推性质,可以得到n!的分析表达式
这确实令人震惊而又感到数学魅力无穷。
第二型曲面积分是在双侧曲面上进行的。
那么,单侧曲面又是什么样子呢?
如果把一条长的矩形纸带扭转180o
后,再把两端粘起来,这就成了仅有一个侧面的曲面,它通常叫做莫比乌斯带,它是德国数学家莫比乌斯在1858年发现的。
返回对于n!,人们长期认为除了表示1,2,3,…
莫比乌斯带有许多有趣的性质,比如用不同方式去剪开它,可有不同的结果:
如果沿着纸带中线剪开,它仍是一条莫比乌斯带,只是长度增加了一倍;
若沿纸带宽处剪开,它却成了一个
扭了两圈的长莫比乌斯带套上一个小莫比乌斯带。
两位美国学者在研究莫比乌斯带制作时提出过一个问题:在保证不摺折纸条的前提下,能做成功莫比乌斯带的纸条的最短长度是多少?
问题看上去似乎很简单,然而回答起来却是如此困难。两位美国人的估计是:若纸条宽是1,则能做成莫比乌斯带的最小长度在之间。
返回莫比乌斯带有许多有趣的性质,比如用不同方式去剪开它,可从图看出,只要,做成功是没有问题的。
但它并不是的最小估计,这个最小估计至今仍然是一个未解之“谜”。
有趣的是,这个在数学史上完全由数学家构想出来的东西,竟进入了有机化学领域。美国科罗拉多大学化学系的沃尔巴、理查兹和霍尔提万格,在实验室第一次合成了形状和莫比乌斯带一样的莫比乌斯分子,他们制造莫比乌斯分子的方法同制作莫比乌斯带的方法极其相似。
返回从图看出,只要,做成功是没有问题的。
数学中的奇异现象还有另一种涵义,当人们没有认清它而做出错误的判断、结论或给出不尽完美的方法时,将会出现一些“反例”。
后来又有人发现,存在着黎曼可积而又具有无穷多个间断点的函数。连续函数是微积分学的主要研究对象,起初,数学家们以为“连续函数至少在某点处可微”,然而魏尔斯特拉斯却找到了一个“处处连续但处处不可微”的例子。返回数学中的奇异现象还有另一种涵义,当人们没有认清它而做出第三节
让学生感受数学美
如何在数学教学过程中展现数学美,让学生在数学学习中能够感受和欣赏数学美,张奠宙教授认为,数学教学中的美学教育有以下4个层次:
美观、美好、美妙、完美。
返回第三节让学生感受数学美如何在数学教学过程中展现数一、美观---外在的美
这主要是数学对象以形式上的对称、和谐、简洁,给人的感官带来美丽、漂亮的感受。
几何学常常带给人们直观的美学形象
返回一、美观---外在的美这主要是数学对象以形式上的对2000年,在东京召开的国际数学教育大会上,日本教师一堂公开课的题目:
在一块矩形场地上筑一花坛,使其面积为场地的一半,要求设计美观。
美国教师要求学生用二次曲线画“米老鼠”或其它画作,发挥学生用几何曲线(写出方程)进行美术创作的想象力。
上海进才中学教研组,他们在进行立体几何教学时,要求学生以“柱体”、“台体”、“锥体”、“球体”、“圆柱”、“圆锥”等3维几何图形,制作一座运动会的奖杯,并要求学生写出每个部件的方程式。
返回2000年,在东京召开的国际数学教育大会上,日本教师一堂二、美好---内在的美
数学上的许多东西,只有认识到它的正确性,才能感觉其“美好”。
“美观”的数学对象,也必须进到“美好”的层次。
“圆”从结构上看是极其美观的。从性质上看它也十分美好。任何圆的周长与直径之比总是一个常数π。π既非有理数又非代数数,是超越数。这种内在的数学价值,展现了“圆”的魅力,引无数英雄尽折腰。从祖冲之的计算到今天用计算机算到60亿位小数,对它的研究尚未完结。返回二、美好---内在的美数学上的许多东西,只有认识到
不美观的数学对象是很多的。一个突出的例子是一元二次方程的求根公式:
这一公式无论从哪方面看都不对称、不和谐、不美观。
但是,当我们了解它、运用它,就会感到它的价值,它的“内秀”。这一公式会告诉我们许多信息:“士”表示它有2个根;“a≠0,△=b2一4ac”会显示根的数目及方程的性质……,所以,当你和它熟悉了,就会觉得它形式上虽难看,本质却是美好的。正如《巴黎圣母院》中的卡西摩多,外表丑陋而内心美好。返回不美观的数学对象是很多的。一个突出的例子是一元二次方三、美妙---快乐的美
教师要给学生一些创新、探究、以至发现的机会,体验发现真理的快乐。
美妙的感觉需要培养,例如,三角形的3条高、3条中线、3条内角平分线都交于一点,这是很美丽、十分美好,同时令人惊奇的结论。发现它会使人觉得数学妙不可言,特别是几何学妙极了。那么在教学时,先不告诉学生结果,让学生自己亲手作图,让学生自己发现这些一下子看不出来的“真理”。可以想见,学生自己发现一个数学真理该会是何等的惊喜。一旦体会到数学的“美妙”,对数学产生由衷的兴趣,也就是顺理成章的事了。返回三、美妙---快乐的美教师要给学生一些创新
每个喜欢数字的人,都曾感受到那样的时刻:一条辅助线使无从着手的几何题豁然开朗,一个技巧使百思不得其解的不等式证明得以通过,
一个特定的“关系一映射一反演”方法使原不相干的问题得以解决,这时的快乐与兴奋真是难以形容,也许只有用一个“妙”字加以概括。
这种美妙的意境,会使人感到天地造化数学之巧妙,数学家创造数字之深邃,数学学习领悟之欢快。达到这一步,学生才算真正感受到数学美的真谛,被数学所吸引,喜欢数学,热爱数学。返回每个喜欢数字的人,都曾感受到那样的时刻:一条辅助线四、完美
-----至善至美
数学总是尽力做到至善至美、完美无缺,这也许是数学的最高“品质”和最高的精神“境界”。
数学家通过300余年的努力来证明费马定理,陈景润对歌德巴赫猜想的苦苦追求,都是追求数学“完美”的典型事例。
二次曲线标准方程,既有圆锥曲线的优美,又有数形结合的风采;既有启迪二次型的数学底蕴,更有描摹天体运动的功能,确实是一件完美的科学杰作。
返回四、完美-----至善至美数学总是尽力做到至善至
数学的美学风格,和艺术风格是一脉相承的。徐利治先生早就把数学概念和诗的意境相结合,如借“孤帆远影碧空尽”来描述极限,更是一种高品位的美学欣赏。爱舍儿的数学画,显示出浓厚的哲学意味,而奇异的数学分形艺术则是20世纪计算机技术的产物。
欣赏数学艺术,如何在课堂教学中发掘数学的艺术魅力,在我国还没有得到应有重视,特别是当前数学教学中某种过度形式化的趋向,往往掩盖了数学的美丽色彩,遮蔽了数学文化光芒,以至丧失了数学教学的美育功能。
把数学美的展示真正落实到课堂上,还有许多工作要做。返回数学的美学风格,和艺术风格是一脉相承的。徐利治先生早第四节
数学美在中国的源头
数学作为一门有组织的、独立的、理性的学科来说,形成于公元前6世纪至公元前3世纪的古希腊时代。
早期的一些古代文明国家,如中国、埃及、印度和巴比伦等,数学已有了开端和萌芽,我们称公元前6世纪以前的这个时期的数学为早期数学,而人类在早期数学中,就已经发现一种朦胧而神秘的数学美了,这是为考古学家和数学史家的大量发现和研究成果所证明了的。
人类关于数学美的观念,对于数学美的感受、追求、探索以及研究也早在遥远的古代就开始了,这里介绍数学美在中国的源头。返回第四节数学美在中国的源头数学作为一门有组织的、一、太极八卦---中国象数学的美
中国,在古代对于数学美的感受与体验,一直可追溯到公元前11世纪的殷末周初时期。
传说“天神”伏羲氏所创造的太极八卦图,说明我国古代先人对于圆形所呈现的美有着自己独特的认识。
古希腊的毕达哥拉斯之所以认为“一切平面图形中最美的是圆形”,其主要原因是由于圆有着无数条对称轴,
显示出一种绝对的对称与和谐。
返回一、太极八卦---中国象数学的美中国,在古代对于数中国的太极图表示出了阴与阳的运动性质,黑色的阴和白色的阳也呈现出一种对称。
但这种对称不是以平直单调的直径作为对称轴,而是以一条S形曲线将大圆均分成两半。
这一奇妙的分割产生许多意想不到的美的效果:它使得这个阴与阳之间的对称不是静止的,而是若即若离、似合非合,彼此渗透、相互补充。
暗示着无休止的强有力的运动,并可通过这个具有动态美的几何图形对事物进行抽象,给出宇宙万物对立统一运动的形象模式,告诉我们宇宙美的一种简单美妙的组合方式,但又没有具体指出它们的确切涵义,只道出了一个“互补性之谜”。其内含寓意的深刻,令人赞叹不已。
返回中国的太极图表示出了阴与阳的运动性质,黑色的阴和白色的阳也“周易”经史学家考证,大约出于公元前11世纪左右,这是一部具有很强的科学现实性和实用性的古典,是世界公认的第一部讨论排列组合的著作,可以说是中国象数学的起源。
从数学角度看,八卦是世界上最早的二进制码,“易有太极,是生两仪,两仪生四象,四象生八卦……”
其中“极、仪、象、卦”和十进制中的“个、十、百、千”一样可以看作进位制的“权”。
返回“周易”经史学家考证,大约出于公元前11世纪左右,这是
八卦仅用两种基本符号:
阳爻“—”和阴爻“一一”,这与现代二进制数用“l”和“0’’两个符号来记数完全一致。
“阳爻”与“阴爻”合称“两仪”,如果取两个为一卦,则这两个符号的排列组合仅有四种,称为“四象”:太阳、少阴、少阳、太阴。
如果取三个为一卦,则这两个符号的排列组合共有八种,称为“八卦”:乾、坤、震、艮、离、坎、兑、巽。其中乾、震、艮、坎因是奇数划而属阳,坤、离、兑、巽因是偶数划而属阴。它们分别对应自然界中主要的八种事物:天、地、雷、山、火、水、泽和风。返回八卦仅用两种基本符号:阳爻“—”和阴爻“一一”,这二、河图洛书—数学形式美的雏形
《周易》上曾提出一种包含数学知识来源于神的说法,原文是“河出图,洛出书,圣人则之。”其大意是:在伏羲氏时代,从黄河里跳出一匹龙马,背着一幅图,这幅图隐含了很多天机,被称为“河图”,如图(a)。在大禹治水时,洛水出现一只大乌龟,也背着一本包含治理国家的书,被称为“洛书”,如图(b)。这图和书是圣人一切知识的源泉。图(a)图(b)返回二、河图洛书—数学形式美的雏形《周易》上曾
我们撇开神话的色彩,其实河图是由1到10的十个自然数的环形排列图,是把l、3、5、7、9五个奇数和2、4、6、8、10五个偶数按照水(北)、火(南)、木(东)、金(西)、土(中)五行方位排列而成的数字圈。其构图本身就呈现出一种整齐美。“洛书”对数的结构作了巧妙的再安排,仅用1到9这九个自然数排列成一个正方形,构成每一行、每一列以及两条对角线上3个数的和都是15。显然,“洛书”是“河图”的精简与升华,由“河图”到“洛书”标志着中华民族古代数学文化的飞跃和成熟,是中国的数学、数学美之源。“洛书”中显现出一种数学形式美的雏形,九个数字之间奇偶相异,给人以整齐划一、均衡对称之感。返回我们撇开神话的色彩,其实河图是由1到10的
西方古代数学家将“洛书”发展为幻方,并以洛书三阶幻方为基础,使阶数不断增高,幻方的结构也随之越来越幻。直至今日,有人仍在研究幻方形成的理论和方法,“洛书”也由此一直被视为大众数学或游戏数学。
探究“洛书”的深层意蕴,其奇妙结构和演算变化建立了它独特的数学形象和模式,并为中外数学家开创了位置分析、数字几何与组合分析的先河。返回西方古代数学家将“洛书”发展为幻方,并以洛结束谢谢观赏!结束谢谢观赏!章数学中蕴涵的美学思想
节数学美的涵义节数学美的特征退出一、数学家论数学美二、数学美的涵义一、简单美二、对称美三、和谐美四、奇异美章数学中蕴涵的美学思想
节数学美的涵义节数学美的特征退出一第三节
让学生感受数学美
第四节
数学美在中国的源头
一、美观---外在的美二、美好---内在的美三、美妙---快乐的美四、完美---
至善至美一、太极八卦---中国象数学的美二、河图洛书—数学形式美的雏形第三节让学生感受数学美第四节数学美在中国的源头一、美第一节
数学美的涵义一、数学家论数学美
古希腊的哲学家、数学家普洛克拉斯(Proelus)断言:“哪里有数,哪里就有美。”
古希腊著名学者毕达哥拉斯(Pythagoras)对数学有很深的造诣,其中毕氏定理(勾股定理)就是他的杰作,他认为“万物最基本的元素是数,数的和谐---这就是美。”返回第一节数学美的涵义一、数学家论数学美古希腊的哲
庞加莱:“数学家们十分重视他们的方法和理论是否十分优美,这并非华而不实的作风,那么到底是什么使我们感到一个解答、一个证明优美呢?那就是各个部分之间的和谐、对称、恰到好处的平稳。”
克莱因:“数学是人类最高超的智力成就,也是人类灵魂最独特的创造。音乐能激发或挠慰情怀,绘画能使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。”
高斯:“去寻求一种最美和最简洁的证明,乃是吸引我研究的主要动力。”返回庞加莱:“数学家们十分重视他们的方法和理论是
数学美是数学科学的本质力量的感性和理性的显现,是一种人的本质力量通过宜人的数学思维结构的呈现。它是自然美的客观反映,是科学美的核心。
二、数学美的涵义返回数学美是数学科学的本质力量的感性和理性的显现,第二节数学美的特征
一、
简单美
简单是指数学语言、符号、方法、逻辑结构和理论体系的简单。
1.符号简单符号是书写数学语言的文字,大数学家克莱因说:“符号常常比发明它们的数学家更能推理”,人们总是探索用简单的符号去表现复杂的数学内容。例如,微积分学中的常用符号:返回第二节数学美的特征一、简单美简单是指数学语言、符号、又如,哈密顿微分算子符号向量场函数v=v1i+v2j+v3k,
(vi是x,y,z的函数)▽v=()(v1i+v2j+v3k)
返回数量场函数u(x,y,z)时,产生梯度又如,哈密顿微分算子符号向量场函数返回数量场函数u(x,y,拉普拉斯方程:若用哈密顿算子表示,也十分漂亮、利落:
▽u·▽u=0返回拉普拉斯方程:若用哈密顿算子表示,也十分漂亮、利落:返回在线性方程组表示为AX=B返回在线性方程组表示为在埃及出土的三千六百年前的莱因特纸草上有下面一串符号用今天的符号表示即:宋、元时期我国也开始了相当于现在“方程论”的研究,当时记数使用的是“算筹”,的记号来表示二次三项式
412x2-x+136其中x系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”。返回在埃及出土的三千六百年前的莱因特纸草上有下面一串符号用今天的16世纪,数学家卡当、韦达等人对方程符号有了改进,直到笛卡尔才第一个倡用x,y,z表示未知数。他曾用
xxx-9xx+26-24∝0表示方程
x3-9x2+26-24=0
这个演变过程就是对简单美的追求过程。返回16世纪,数学家卡当、韦达等人对方程符号有了改进,直到笛卡尔
如果要具体写出圆周率或欧拉常数根本不可能,然而用数学符号却能精确地表示它们。有些数及其运算只有用符号表示,才能更精确、更完美。例如,圆周率是一个常数,1737年欧拉首先倡导用希腊字母π来表示它,且通用全世界;也是欧拉用e表示特殊的无理常数─欧拉常数返回如果要具体写出圆周率或欧拉常数根本不可能,然2.形式简单
艺术家们追求的美中,形式美是其中特别重要的内容,他们在渲染美时,常常运用不同形式,如泰山的雄伟,华山的险峻,黄山的奇特,峨眉的秀丽,青海的幽深,滇池的开阔等。数学家们也十分注重数学的形式美,美国数学家柏克提出了一个公式
审美度=即人们对数学的审美感受程度,与数学表现出的秩序成正比,与数学表现出的复杂性成反比。因此,按审美度要求,数学的表现形式越简单就越美。返回2.形式简单艺术家们追求的美中,形式美是其中特别重要的内格林公式斯托克斯公式返回格林公式斯托克斯公式返回空间解析几何中
椭球
椭圆抛物面
它们不仅便于记忆,而且具有形式美。
返回空间解析几何中椭球椭圆抛物面它们不仅便于记忆,而且具3.语言简单数学的简单美表现在语言上使人回味无穷。
如“负负得正”;“对顶角相等”;“实数集不可数”;
“角、边、角”;“边、角、边”等。数列极限
函数极限
导数概念
返回3.语言简单数学的简单美表现在语言上使人回味无穷。如4.方法简单
数学中的许多简单有效的判定定理,形式优美的表达方式,并不是原本固有的,而是经过人们长期比较、筛选的结果。
例如,对于正项级数的收敛性判别,达朗贝尔判别法(比值法)与柯西判别法(根式法)都是十分简单有效的判别法,然而它们都有一个共同的不足,就是不能判别当极限值时级数的敛散性,于是人们不断地给出了许多其他形式的判别法。比达朗贝尔判别法更精细的是拉贝(Laber)判别法
设
则当r>1时,级数收敛;
当r<1时,级数发散。返回4.方法简单数学中的许多简单有效的判定定理,形式优美事实上,由达朗贝尔判别法:设级数满足级数收敛级数发散
不确定收敛;返回事实上,由达朗贝尔判别法:设级数满足级数收敛级数发散不确收敛;发散;敛散性不确定。
凡是用达氏法能判别的级数敛散性,用拉贝法也能判别,因此,拉贝法比达氏法更精细。返回收敛;发散;敛散性不确定。凡是用达氏法能判别的比拉贝判别法更精细的是库麦尔(Kummer)判别法,其中{Cn}适合条件:级数发散。
设则当k>0时,级数收敛;当k<0时,级数发散。
返回事实上,当时,库麦尔判别法即为拉贝判别法。比拉贝判别法更精细的是库麦尔(Kummer)判别法,其中{拉格朗日型余项简单整齐,易于记忆,使用方便。从审美度而言拉格朗日型余项是最美的,因此受到人们的青睐。
然而,人们在应用泰勒公式时,最习惯使用的还是拉格朗日型余项
其中在x与x0
之间。返回
又如,泰勒公式的余项,局部性的有皮亚诺(Peano)余项,整体性的有施诺米尔奇(Schlomilch)─罗赫(Roche)余项,柯西余项和拉格朗日余项等。在整体性余项中,后两种余项仅是前一种余项的特例。因而,从整体性考虑,前一种余项更完美。
拉格朗日型余项简单整齐,易于记忆,使用方便。从审美度而言拉格二、
对称美
对称是指图形或数式的对称,概念、命题、法则或结构的对偶、对应、对逆等。1.形式对称
解析几何中的标准图形
返回二、对称美对称是指图形或数式的对称,概念、命题、法则代数中的二项式定理:对称行列式:
对称矩阵:返回代数中的二项式定理:对称行列式:对称矩阵:返微积分中空间曲线L:x=x(t),y=y(t),z=z(t)的切线方程
空间曲面S:F(x,y,z)=0的法线方程
==导数的运算法则
返回微积分中空间曲线L:x=x(t),y=y(t),2.关系对称
运算的对称:加与减、乘与除、乘方与开方、指数与对数、微分与积分、矩阵与逆矩阵等;
概念的对称:函数与反函数、奇与偶、单增与单减、连续与间断、收级与发散等;
命题的对称:严格单减。
返回2.关系对称运算的对称:加与减、乘与除、乘方与开方“共轭”关系对称性:
共轭无理数
共轭矩阵
共轭积分返回“共轭”关系对称性:共轭无理数“对偶”关系对称性:
集合中的对偶关系
线性规划中的对偶关系
线性规划问题:
(*)返回“对偶”关系对称性:集合中的对偶关系线性规划中的对偶关系对偶规划问题:
(**)
由对偶定理知,若线性规划问题(*)有最优解,则其对偶规划问题(**)也有最优解,且两问题的目标函数最优值相等。反之也成立。返回返回对偶规划问题:(**)由对偶定理知,若线性规划问题3.对称美方法的运用
对称美方法是数学中的锐利武器,数学家们利用它揭示和发现了很多数学中的奥秘,其中最典型的有麦克斯韦方程、笛沙格定理和伽罗瓦群等,它被著名数学家狄拉克(Dirac)称为“自然科学时代新方法的精华”。下面仅以求积分为例,来说明它的妙用。(1)利用积分区间的对称性
利用积分区间关于原点的对称性和被积函数的奇偶性,简化定积分的计算,是积分运算中最常用的一种方法。
若积分区间不关于原点对称,或积分区间虽然关于原点对称,但被积函数是非奇非偶函数,有时通过适当的换元或拆项等方法也可转化为对称区间上的积分问题。返回3.对称美方法的运用对称美方法是数学中的例1求
(n为自然数)。令,则可将积分化为对称区间。
返回例1求(2)利用函数图象的对称性
借助积分中函数图象的对称性,获得简捷的解题途径,这是对称美方法的又一妙用。
例2设C为对称于坐标轴的平面光滑闭曲线,证明
易知积分与路径无关。设D为曲线C围成的平面闭区域,则由格林公式返回(2)利用函数图象的对称性借助积分中函数图象的对因为积分域D关于x轴对称,又y3
是奇函数,同理,所以(3)利用轮换对称性
根据研究问题中解析式结构的对称性,由一个结论迅速地得出相似结论,这不仅能缩减冗长繁琐的计算或证明过程,而且给人以对称美的享受。例3计算
椭球的外表面。
返回因为积分域D关于x轴对称,又y3是奇函数,同理,所以(3)作广义极坐标变换
,则
返回作广义极坐标变换,用轮换对称法,即得
于是
返回用轮换对称法,即得于是返回(4)挖掘潜在的对称关系
有的问题从表面上看,似乎与对称无关。但如果仔细分析,寻找潜在的对称关系,从而将问题转化为对称问题,就能很快找到突破口,使问题迎刃而解。例4计算
若直接令,则会导致错误结论。
因为
f(x)=在[0,]上的原函数不是初等函数,
所以不能用一般定积分的方法来计算。
返回(4)挖掘潜在的对称关系有的问题从表面上看,似乎与于是寻找有无对称点,容易发现
即在区间[0,]上横坐标关于的任意两个对称点x与相应的函数值关于也对称,
故
返回于是寻找有无对称点,容易发现即在区间[0,(5)构造对称关系
有些数学问题,原来并不具有对称性,在解题过程中,如果善于根据问题的特点,构造出某种对称关系,便能使问题很快得到解决。例5计算其中D为y=1,x=-1所围成的区域,f是一连续函数。
积分区域不具有对称性,作曲线,
将D分成D1,D2两部分,返回(5)构造对称关系有些数学问题,原来并不具有对称性于是D1与D2
分别关于y轴和x轴对称。
又因为是x或y的奇函数,所以=0
从上述解题过程中都放射出对称美思想的光芒,正如德国数学家外尔(Weyl)所说:“美和对称紧密相关”。返回于是D1与D2分别关于y轴和x轴对称。又因为是x或y的奇三、和谐美
数学中的和谐美是指数学内容与内容之间、内容与形式之间、部分与整体之间存在着内在的联系或共同规律,从而形成本质上的严谨与统一。和谐指事物之间具有匀称、有序、明确的变化规律。1.严谨是和谐的基础
数学的严谨自然显现出它的和谐。为了追求严谨,消除数学中的不和谐因素,数学家们一直在努力。数学史上所谓的“数学危机”正是某些数学理论不和谐所致。
返回三、和谐美数学中的和谐美是指数学内容与内容之间、内第一次危机---无理数的诞生。
第二次危机------实数理论得以建立,导致集合论的诞生。第三次数学危机------“罗素悖论”和其它悖论的产生,为了避免悖论,策梅洛(Zermelo)在1908年提出了一种公理系统,后经弗兰克尔(Fraenkel)在1921年加以改进,形成了目前公认的彼此无矛盾的公理系统,简称ZF公理系统。函数的连续性,是当今数学中的一个重要基本概念,然而它的现代定义的形成,也经历了一个从不和谐到和谐的漫长过程。18世纪,数学家欧拉认为,由一个单独表达式给出的函数是连续的,而由几个表达式给出的函数是不连续的。例如,欧拉函数返回第一次危机---无理数的诞生。第二次危机------实数理是不连续的,而由两个分支组成的双曲线(反比例函数),因为它是由一个表达式给出的,就认为它是连续的。19世纪,傅立叶证明:定义在某个区间上的任意函数可表示成该区间上的正弦与余弦的无穷级数。比如,返回是不连续的,而由两个分支组成的双曲线(反比例函数),19世纪可表示为
这样一来,上述函数依照欧拉的见解既不是连续的,同时又是连续的。
1821年,柯西对“连续”概念重新叙述,直至1850年魏尔斯特拉斯给出“”形式的定义,才使得“连续”这一概念有了新的解释。2.统一是和谐的标志
统一是指数学中内容与内容之间、内容与形式之间、章节与章节之间客观存在的相互联系。
返回可表示为这样一来,上述函数依照欧拉的见解既不是连续的解析几何中,引入极坐标之后,椭圆、双曲线、抛物线统一于公式平面上的二次曲线方程
由于系数A,B,C,…,F不同,其形态万千,但是欧拉通过坐标变换,将它们化为下面九种标准形状:返回解析几何中,引入极坐标之后,椭圆、双曲线、抛物线统一于公式(双曲线)(两虚直线相交)(虚椭圆)(椭圆)返回(双曲线)(两虚直线相交)(虚椭圆)(椭圆)返(两重合直线)(两平行虚直线)(两平行直线)(抛物线)(两相交直线)返回(两重合直线)(两平行虚直线)(两平行直线)(抛
在积分学中,不定积分与定积分是两个切然不同的概念,但在微积分基本公式之中得到和谐统一,从而极大地推动了微积分的应用与发展。
定积分、重积分、曲线积分和曲面积分,它们表述的实际意义各不相同,但却都统一于黎曼积分之中。
各类积分之间都有着内在联系:返回在积分学中,不定积分与定积分是两个切然不同的概念,但在二重积分三重积分Ⅰ型曲线积分Ⅰ型曲面积分Ⅱ型曲线积分Ⅱ型曲面积分定积分返回二重积分三重积分Ⅰ型曲线积
四、奇异美
奇异指数学中的方法、结论或有关发展出乎意料,使人既惊奇又赞赏与折服。
徐利治先生说:“奇异是一种美,奇异到极度更是一种美。”
在数学史上曾吸引人们广泛关注的有“蝴蝶定理”。
1815年,数学家奥纳首先解决了这个问题的证明。但由于它优美的外形及包含的深刻内涵,引起了人们广泛的兴趣,100多年来研究者众多,给出了不少初等与高等的证明,其中被公认为最奇妙的证明是1973年由斯特温等人给出的。
返回四、奇异美奇异指数学中的方法、结论或有关发展出乎证明:由图所示,圆内共有四对相等的角。
设
PM=x,MQ=y,AM=MB=a,则有
化简得
返回证明:由图所示,圆内共有四对相等设PM=x,MQ由相交弦定理知
故有
因x,y都大于0,上式仅在x=y,即PM=MQ时成立。
上述证明中没有添加任何辅助线,证明过程简明、匀称,好优美漂亮!
返回由相交弦定理知故有因x,y都大于0,上式仅在x=高等数学中这种“离经叛道”的奇异现象,随处可见。
比如,人们长期以为,周期函数一定存在最小正周期,然而狄利克雷函数是周期函数,但不存在最小正周期。
实数轴上的有理点与无理点都是处处稠密的,然而无理点却比有理点多得多。
洛比达(L’Hospital)法则是求未定式极限的锐利武器,但它对极限返回高等数学中这种“离经叛道”的奇异现象,随处可见。却无能为力。
在不定积分中,有些看上去非常简单的函数,却“积”不出来:
在欧拉公式
代入
,得
真叫人拍案叫绝,人们把这5个常数戏称为数学中的“五朵金花”。
返回却无能为力。在不定积分中,有些看上去非常简单的函数
对于n!,人们长期认为除了表示1,2,3,…,n这n个连续自然数的乘积外,再没有别的意义。但在微积分中根据嘎玛函数Г()的递推性质,可以得到n!的分析表达式
这确实令人震惊而又感到数学魅力无穷。
第二型曲面积分是在双侧曲面上进行的。
那么,单侧曲面又是什么样子呢?
如果把一条长的矩形纸带扭转180o
后,再把两端粘起来,这就成了仅有一个侧面的曲面,它通常叫做莫比乌斯带,它是德国数学家莫比乌斯在1858年发现的。
返回对于n!,人们长期认为除了表示1,2,3,…
莫比乌斯带有许多有趣的性质,比如用不同方式去剪开它,可有不同的结果:
如果沿着纸带中线剪开,它仍是一条莫比乌斯带,只是长度增加了一倍;
若沿纸带宽处剪开,它却成了一个
扭了两圈的长莫比乌斯带套上一个小莫比乌斯带。
两位美国学者在研究莫比乌斯带制作时提出过一个问题:在保证不摺折纸条的前提下,能做成功莫比乌斯带的纸条的最短长度是多少?
问题看上去似乎很简单,然而回答起来却是如此困难。两位美国人的估计是:若纸条宽是1,则能做成莫比乌斯带的最小长度在之间。
返回莫比乌斯带有许多有趣的性质,比如用不同方式去剪开它,可从图看出,只要,做成功是没有问题的。
但它并不是的最小估计,这个最小估计至今仍然是一个未解之“谜”。
有趣的是,这个在数学史上完全由数学家构想出来的东西,竟进入了有机化学领域。美国科罗拉多大学化学系的沃尔巴、理查兹和霍尔提万格,在实验室第一次合成了形状和莫比乌斯带一样的莫比乌斯分子,他们制造莫比乌斯分子的方法同制作莫比乌斯带的方法极其相似。
返回从图看出,只要,做成功是没有问题的。
数学中的奇异现象还有另一种涵义,当人们没有认清它而做出错误的判断、结论或给出不尽完美的方法时,将会出现一些“反例”。
后来又有人发现,存在着黎曼可积而又具有无穷多个间断点的函数。连续函数是微积分学的主要研究对象,起初,数学家们以为“连续函数至少在某点处可微”,然而魏尔斯特拉斯却找到了一个“处处连续但处处不可微”的例子。返回数学中的奇异现象还有另一种涵义,当人们没有认清它而做出第三节
让学生感受数学美
如何在数学教学过程中展现数学美,让学生在数学学习中能够感受和欣赏数学美,张奠宙教授认为,数学教学中的美学教育有以下4个层次:
美观、美好、美妙、完美。
返回第三节让学生感受数学美如何在数学教学过程中展现数一、美观---外在的美
这主要是数学对象以形式上的对称、和谐、简洁,给人的感官带来美丽、漂亮的感受。
几何学常常带给人们直观的美学形象
返回一、美观---外在的美这主要是数学对象以形式上的对2000年,在东京召开的国际数学教育大会上,日本教师一堂公开课的题目:
在一块矩形场地上筑一花坛,使其面积为场地的一半,要求设计美观。
美国教师要求学生用二次曲线画“米老鼠”或其它画作,发挥学生用几何曲线(写出方程)进行美术创作的想象力。
上海进才中学教研组,他们在进行立体几何教学时,要求学生以“柱体”、“台体”、“锥体”、“球体”、“圆柱”、“圆锥”等3维几何图形,制作一座运动会的奖杯,并要求学生写出每个部件的方程式。
返回2000年,在东京召开的国际数学教育大会上,日本教师一堂二、美好---内在的美
数学上的许多东西,只有认识到它的正确性,才能感觉其“美好”。
“美观”的数学对象,也必须进到“美好”的层次。
“圆”从结构上看是极其美观的。从性质上看它也十分美好。任何圆的周长与直径之比总是一个常数π。π既非有理数又非代数数,是超越数。这种内在的数学价值,展现了“圆”的魅力,引无数英雄尽折腰。从祖冲之的计算到今天用计算机算到60亿位小数,对它的研究尚未完结。返回二、美好---内在的美数学上的许多东西,只有认识到
不美观的数学对象是很多的。一个突出的例子是一元二次方程的求根公式:
这一公式无论从哪方面看都不对称、不和谐、不美观。
但是,当我们了解它、运用它,就会感到它的价值,它的“内秀”。这一公式会告诉我们许多信息:“士”表示它有2个根;“a≠0,△=b2一4ac”会显示根的数目及方程的性质……,所以,当你和它熟悉了,就会觉得它形式上虽难看,本质却是美好的。正如《巴黎圣母院》中的卡西摩多,外表丑陋而内心美好。返回不美观的数学对象是很多的。一个突出的例子是一元二次方三、美妙---快乐的美
教师要给学生一些创新、探究、以至发现的机会,体验发现真理的快乐。
美妙的感觉需要培养,例如,三角形的3条高、3条中线、3条内角平分线都交于一点,这是很美丽、十分美好,同时令人惊奇的结论。发现它会使人觉得数学妙不可言,特别是几何学妙极了。那么在教学时,先不告诉学生结果,让学生自己亲手作图,让学生自己发现这些一下子看不出来的“真理”。可以想见,学生自己发现一个数学真理该会是何等的惊喜。一旦体会到数学的“美妙”,对数学产生由衷的兴趣,也就是顺理成章的事了。返回三、美妙---快乐的美教师要给学生一些创新
每个喜欢数字的人,都曾感受到那样的时刻:一条辅助线使无从着手的几何题豁然开朗,一个技巧使百思不得其解的不等式证明得以通过,
一个特定的“关系一映射一反演”方法使原不相干的问题得以解决,这时的快乐与兴奋真是难以形容,也许只有用一个“妙”字加以概括。
这种美妙的意境,会使人感到天地造化数学之巧妙,数学家创造数字之深邃,数学学习领悟之欢快。达到这一步,学生才算真正感受到数学美的真谛,被数学所吸引,喜欢数学,热爱数学。返回每个喜欢数字的人,都曾感受到那样的时刻:一条辅助线四、完美
-----至善至美
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度仓储物流劳务派遣安全责任书
- 2025年度在线贷款中介居间合作协议
- 二零二五年度企业内部员工外出安全免责合同
- 2025年度个人租房合同协议书模板(含租赁房屋维修费用承担)
- 2025年度应届大学生实习合同
- 国际发展合作的中国实践 第六期绿色发展援助篇
- 2025年度抖音网红达人合作推广合同模板
- 2025年度合作社土地入股与农业资源环境监测合作协议
- 2025年度房屋租赁合同租赁双方租赁期间租赁物租赁权转让协议
- 沙石运输行业自律公约
- 2024甘肃省公务员(省考)行测真题
- 会计学专业数智化转型升级实践
- JJG 1204-2025电子计价秤检定规程(试行)
- 中国糖尿病防治指南(2024版)解读-1
- 2024年计算机二级WPS考试题库(共380题含答案)
- 2024年德州职业技术学院单招职业适应性测试题库
- 跨学科实践活动10调查我国航天科技领域中新型材料新型能源的应用课件九年级化学人教版(2024)下册
- 大学生劳动实践活动总结
- 代理分销销售协议书
- 2024年江苏农牧科技职业学院单招职业适应性测试题库参考答案
- 2024综合基础知识考试题库及解析(146题)
评论
0/150
提交评论