经济学第六章习题讲解计量经济学_第1页
经济学第六章习题讲解计量经济学_第2页
经济学第六章习题讲解计量经济学_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章自相关习题参考答案练习题6.1参考解答:(1)建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:05/06/10 Time:22:58Sample:19601995Includedobservations:36CoefficientStd.Errort-StatisticProb.X 0.9358660.007467125.34110.0000C -9.4287452.504347-3.7649510.0006R-squared0.997841Meandependentvar289.9444AdjustedR-squared0.997777S.D.dependentvar95.82125S.E.ofregression4.517862Akaikeinfocriterion5.907908Sumsquaredresid693.9767Schwarzcriterion5.995881Loglikelihood-104.3423Hannan-Quinncriter.5.938613F-statistic15710.39Durbin-Watsonstat0.523428Prob(F-statistic)0.000000估计结果如下

Y9.42870.9359Xt tSe=(2.5043) (0.0075)t=(-3.7650) (125.3411)R2=0.9978,F=15710.39,df=34,DW=0.523436DWdU=1.525,模型中DW<dL,显然消费模型中有自相关。(3)采用广义差分法e0.72855et t由上式可知0.728550,对原模型进行广义差分,得到广义差分方程:Y0.72855Yt

t

(10.72855)+(X1 2

0.72855

t

)ut

0.72855

t1回归结果如下:DependentVariable:Y-0.72855*Y(-1)Method:LeastSquaresDate:05/06/10 Time:23:11Sample(adjusted):1961Includedobservations:35afteradjustmentsCoefficient Std.Error t-Statistic Prob.C-3.7830591.870964-2.0219840.0513X-0.72855*X(-1)0.9484060.01890550.168200.0000R-squared0.987058Meandependentvar86.40203AdjustedR-squared0.986666S.D.dependentvar26.56943S.E.ofregression3.068065Akaikeinfocriterion5.135417Sumsquaredresid310.6298Schwarzcriterion5.224294Loglikelihood-87.86979Hannan-Quinncriter.5.166097F-statistic2516.848Durbin-Watsonstat2.097157Prob(F-statistic)0.0000003.78310.9484Xt t(1.8710)(0.0189)t=(-2.022)(50.1682)R2=0.9871R2=0.9867 F=2516.848DW=2.0971571355%DW统计表可知dL==模型中DW=2.0972>dU,说明广义差分模型中已无自相关。同时,判定系数R2、t、F统计量均达到理想水平。由差分方程式可以得出:ˆˆ*/(ˆ)0 0

3.7831 10.72855所以最终的消费模型为:

ˆˆ1 1

0.948413.93660.9484Xt t由上述模型可知,美国个人实际可支配收入每增加1元,个人实际消费支出平均增加0.9484元。练习题6.2参考解答:12中不存在自相关。DW1中,DW=0.8252显著水平的DW统计表可知dL

1.106,dU

1.371,DWdL

,因此模型1存在正自相关;而在模型2中,DW=1.82,查5%显著水平的DW统计表可知dL

0.982,d 1.539,dU

DW4dU

,因此模型2不存在自相关。虚假自相关是由模型设定失误所造成的自相关,主要包括遗漏某些重要的解释变量或者模型函数形式不正确,因此在区分虚假自相关和真正自相关是主要从这两个方面来判断,即根据经济意义检查解释变量是否遗漏了重要的变量,或者根据数据的数字特征检验模型形式的设定是否恰当。练习题6.3参考解答:(1)先对数据进行处理,收入-消费模型(个人实际收入与个人实际消费支出)个人实际消费支出=人均生活消费支出/商品零售物价指数*100建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:05/06/10 Time:23:20Sample:20012019Includedobservations:19CoefficientStd.Errort-StatisticProb.X 0.6904880.01287753.620680.0000C 79.9300412.399196.4463900.0000R-squared0.994122Meandependentvar700.2747AdjustedR-squared0.993776S.D.dependentvar246.4491S.E.ofregression19.44245Akaikeinfocriterion8.872095Sumsquaredresid6426.149Schwarzcriterion8.971510Loglikelihood-82.28490Hannan-Quinncriter.8.888920F-statistic2875.178Durbin-Watsonstat0.574663Prob(F-statistic)0.000000估计结果如下

79.9300.690Xt tSe(12.399)(0.013)t(6.446)(53.621)R20.994 DW0.575

(6.38)(2)DW=0.575,对样本量为36、一个解释变量的模型、5%显著水平的DW统计表可知d 1.18,d 1.40,DW1.18L U ,说明误差项存在正自相关。(3)采用广义差分法使用普通最小二乘法估计

的估计值,得et

t1由上式可知

Se(0.178t(3.701)=0.657352,对原模型进行广义差分,得到广义差分方程:Y0.657352Yt t

(10.657352)+(X1 2

t

)ut

0.657352ut1回归结果如下:DependentVariable:Y-0.657352*Y(-1)Method:LeastSquaresDate:05/06/10 Time:23:25Sample(adjusted):2002Includedobservations:18afteradjustmentsCoefficient

Std.

t-Statistic

Prob.CX-0.657352*X(-1)

35.977610.668695

8.1035460.020642

4.43973732.39512

0.00040.0000R-squared0.984983Meandependentvar278.1002AdjustedR-squared0.984044S.D.dependentvar105.1781S.E.ofregression13.28570Akaikeinfocriterion8.115693Sumsquaredresid2824.158Schwarzcriterion8.214623Loglikelihood-71.04124Hannan-Quinncriter.8.129334F-statistic1049.444Durbin-Watsonstat1.830746Prob(F-statistic)0.000000估计结果如下

^Y*35.97761+0.668695X*^t tt(4.439737) (32.39512)R20.984983 DW=1.830746d 1.158

d DW1.834dDW=1.830,已知L U在广义差分模型中已无自相关。由差分方程式可以得出:

,模型中U

U因此,ˆˆ0 0

/(ˆ)

35.9776110.668695

(错误)ˆ ˆ0 0

/(1ˆ)

35.9776110.657352

(正确)ˆˆ*1 1

0.668695因此,修正后的回归模型应为Y108.5940.668695Xt t由上述模型可知,个人实际收入每增加1元,个人实际支出平均增加0.668695元。参考答案原题建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:11/26/10 Time:19:47Sample:19701994Includedobservations:25CoefficientStd.Errort-StatisticProb.X 1.5297120.05097630.008460.0000C -68.1602615.26513-4.4650960.0002R-squared0.975095Meandependentvar388.0000AdjustedR-squared0.974012S.D.dependentvar43.33397S.E.ofregression6.985763Akaikeinfocriterion6.802244Sumsquaredresid1122.420Schwarzcriterion6.899754Loglikelihood-83.02805Hannan-Quinncriter.6.829289F-statistic900.5078Durbin-Watsonstat0.348288Prob(F-statistic)0.00000068.060261.529712Xt tt=(-4.46509)(30.00846)R2=0.975R2=0.974 F=900.5078DW=0.348288给定n=25,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.288,dL

1.454。模型中DWdL

,所以可以判断模型中存在正自相关。对模型的修正采广义差分法修正自相关:使用普通最小二乘法估计,得e0.873772et tt6.734519由上式可知ˆ=0.873772,对原模型进行广义差分,得到广义差分方程:Y0.873772Yt t

(10.873772)+(X1 2

t

)ut

0.873772ut1回归结果如下:DependentVariable:Y-0.873772*Y(-1)Method:LeastSquaresDate:11/26/10 Time:20:04Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient

Std.

t-Statistic

Prob.X-0.873772*X(-1)C

1.2520333.198065

0.1877947.790739

6.6670590.410496

0.00000.6854R-squared0.668922Meandependentvar54.86397AdjustedR-squared0.653873S.D.dependentvar6.671848S.E.ofregression3.925217Akaikeinfocriterion5.652375Sumsquaredresid338.9612Schwarzcriterion5.750547Loglikelihood-65.82850Hannan-Quinncriter.5.678420F-statistic44.44968Durbin-Watsonstat1.322343Prob(F-statistic)0.000001ˆˆ*3.1980651.252033X*t tt=(0.410496)(6.667059)R2=0.669R2=0.654 F=44.450DW=1.322343给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dˆˆˆ*/(ˆ)1.252033/(0.873772)9.918820 0ˆˆ*3.198065

1.446。模型中dL

DWdU

,DW值落在了无法判断的区域。1 19.91882t t一阶差分法对模型进行一阶差分,回归结果如下:DependentVariable:Y-Y(-1)Method:LeastSquaresDate:11/26/10 Time:20:37Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient

Std.

t-Statistic

Prob.X-X(-1)

1.333333

0.131422

10.14543

0.0000R-squared0.652682Meandependentvar6.208333AdjustedR-squared0.652682S.D.dependentvar6.678839S.E.ofregression3.936084Akaikeinfocriterion5.619023Sumsquaredresid356.3333Schwarzcriterion5.668109Loglikelihood-66.42828Hannan-Quinncriter.5.632046Durbin-Watsonstat1.591830给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dL

1.446。模型中dU

DW4dU

,因此模型已不存在自相关。德宾两步法建立辅助回归方程Yt

(1)X1 2

2

Xt

vt

,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:11/26/10 Time:20:43Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficientStd.Errort-StatisticProb.C-7.63364112.84334-0.5943660.5589X1.1726220.1885276.2199190.0000X(-1)-1.0062720.254581-3.9526660.0008Y(-1)0.8962550.1239097.2331720.0000R-squared0.992083Meandependentvar391.6667AdjustedR-squared0.990896S.D.dependentvar40.10927S.E.ofregression3.827019Akaikeinfocriterion5.673061Sumsquaredresid292.9215Schwarzcriterion5.869403Loglikelihood-64.07673Hannan-Quinncriter.5.725151F-statistic835.4552Durbin-Watsonstat1.369050Prob(F-statistic)0.000000把Yt1

的回归系数

看做的一个估计值,之后进行广义差分,回归模型为:Y0.896255Yt t

(10.896255)+(X1 2

t

)ut

0.896255ut1回归结果如下:DependentVariable:Y-0.896255*Y(-1)Method:LeastSquaresDate:11/26/10 Time:20:47Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient

Std.

t-Statistic

Prob.X-0.896255*X(-1)C

1.2010314.652899

0.1893056.595502

6.3444250.705466

0.00000.4879R-squared0.646596Meandependentvar46.19771AdjustedR-squared0.630532S.D.dependentvar6.352384S.E.ofregression3.861224Akaikeinfocriterion5.619501Sumsquaredresid327.9990Schwarzcriterion5.717672Loglikelihood-65.43401Hannan-Quinncriter.5.645545F-statistic40.25173Durbin-Watsonstat1.305817Prob(F-statistic)0.000002给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dL

1.446。模型中dL

DWdU

,DW值落在了无法判断的区域。XY之后建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:12/04/10 Time:11:21Sample:19701994Includedobservations:25CoefficientStd.Errort-StatisticProb.X 0.6374370.02124230.008460.0000C 50.874548.2910586.1360730.0000R-squared0.975095Meandependentvar298.2000AdjustedR-squared0.974012S.D.dependentvar27.97320S.E.ofregression4.509491Akaikeinfocriterion5.926864Sumsquaredresid467.7167Schwarzcriterion6.024374Loglikelihood-72.08580Hannan-Quinncriter.5.953909F-statistic900.5078Durbin-Watsonstat0.352762Prob(F-statistic)0.00000050.874540.637437Xt tt=(6.1361)(30.00846)R2=0.975R2=0.974 F=900.5078DW=0.352762给定n=25,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.288,dL

1.454DWdL

,所以可以判断模型中存在正自相关。对模型的修正1)采广义差分法修正自相关:使用普通最小二乘法估计,得e0.850961et tt6.682710=0.850961,对原模型进行广义差分,得到广义差分方程:Y0.850961Yt t

(10.850961)+(X1 2

t

)ut

0.850961ut1回归结果如下:DependentVariable:Y-0.850961*Y(-1)Method:LeastSquaresDate:12/04/10 Time:11:17Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient

Std.

t-Statistic

Prob.X-0.850961*X(-1)C

0.53512513.97334

0.0747934.789436

7.1547962.917533

0.00000.0080R-squared0.699417Meandependentvar48.03762AdjustedR-squared0.685754S.D.dependentvar4.550930S.E.ofregression2.551144Akaikeinfocriterion4.790616Sumsquaredresid143.1833Schwarzcriterion4.888787Loglikelihood-55.48739Hannan-Quinncriter.4.816661F-statistic51.19110Durbin-Watsonstat2.377660Prob(F-statistic)0.000000ˆ*13.973340.535125X*t tt=(2.91753)(7.154796)R2=0.699R2=0.685 F=51.191DW=2.37766给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dˆˆˆ*/(ˆ)13.97334/(0.850961)93.7562650 0ˆˆ*0.535125

1.446。模型中dU

DW4dU

,因此可以判断模型不存在自相关。1 193.756256t t参考解答:DependentVariable:LOG(Y)Method:LeastSquaresDate:05/07/10 Time:00:17Sample:19802000Includedobservations:21CoefficientStd.Errort-StatisticProb.C 2.1710410.2410259.0075290.0000LOG(X) 0.9510900.03889724.451230.0000R-squared0.969199Meandependentvar8.039307AdjustedR-squared0.967578S.D.dependentvar0.565486S.E.ofregression0.101822Akaikeinfocriterion-1.640785Sumsquaredresid0.196987Schwarzcriterion-1.541307Loglikelihood19.22825Hannan-Quinncriter.-1.619196F-statistic597.8626Durbin-Watsonstat1.159788Prob(F-statistic)0.000000ln2.1710410.95109lnXit=(9.007529)(30.00846)R2=0.969199R2=0.967578iF=597.8626DW=1.159788给定n=21,k1,在0.05的显著水平下ln2.1710410.95109lnXit=(9.007529)(30.00846)R2=0.969199R2=0.967578iF=597.8626DW=1.159788d 1.221 dL

DW1.159788

L,所以可以判断模型中存在正自相关。采用广义差分法修正自相关: 使用普通最小二乘法估计

的估计值et

,得0.400234et1由上式可知

t1.722522=0.400234,对原模型进行广义差分,得到广义差分方程:lnYt

0.400234lnYt1

(10.400234)+1

(lnXt

t

)ut

0.400234ut1回归结果如下:DependentVariable:LOG(Y)-0.400234*LOG(Y(-1))Method:LeastSquaresDate:05/07/10 Time:00:21Sample(adjusted):1981Includedobservations:20afteradjustmentsCoefficient

Std.Error

t-Statistic

Prob.CLOG(X)-0.400234*LOG(X(-1))

1.4770950.905989

0.2256360.059767

6.54637215.15871

0.00000.0000R-squared0.927357Meandependentvar4.882162AdjustedR-squared0.923321S.D.dependentvar0.344052S.E.ofregression0.095271Akaikeinfocriterion-1.769534Sumsquaredresid0.163380Schwarzcriterion-1.669961Loglikelihood19.69534Hannan-Quinncriter.-1.750096F-statistic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论