![经济学第六章习题讲解计量经济学_第1页](http://file4.renrendoc.com/view/eadc694f68acc7d64ff3480123204c03/eadc694f68acc7d64ff3480123204c031.gif)
![经济学第六章习题讲解计量经济学_第2页](http://file4.renrendoc.com/view/eadc694f68acc7d64ff3480123204c03/eadc694f68acc7d64ff3480123204c032.gif)
![经济学第六章习题讲解计量经济学_第3页](http://file4.renrendoc.com/view/eadc694f68acc7d64ff3480123204c03/eadc694f68acc7d64ff3480123204c033.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章自相关习题参考答案练习题6.1参考解答:(1)建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:05/06/10 Time:22:58Sample:19601995Includedobservations:36CoefficientStd.Errort-StatisticProb.X 0.9358660.007467125.34110.0000C -9.4287452.504347-3.7649510.0006R-squared0.997841Meandependentvar289.9444AdjustedR-squared0.997777S.D.dependentvar95.82125S.E.ofregression4.517862Akaikeinfocriterion5.907908Sumsquaredresid693.9767Schwarzcriterion5.995881Loglikelihood-104.3423Hannan-Quinncriter.5.938613F-statistic15710.39Durbin-Watsonstat0.523428Prob(F-statistic)0.000000估计结果如下
Y9.42870.9359Xt tSe=(2.5043) (0.0075)t=(-3.7650) (125.3411)R2=0.9978,F=15710.39,df=34,DW=0.523436DWdU=1.525,模型中DW<dL,显然消费模型中有自相关。(3)采用广义差分法e0.72855et t由上式可知0.728550,对原模型进行广义差分,得到广义差分方程:Y0.72855Yt
t
(10.72855)+(X1 2
0.72855
t
)ut
0.72855
t1回归结果如下:DependentVariable:Y-0.72855*Y(-1)Method:LeastSquaresDate:05/06/10 Time:23:11Sample(adjusted):1961Includedobservations:35afteradjustmentsCoefficient Std.Error t-Statistic Prob.C-3.7830591.870964-2.0219840.0513X-0.72855*X(-1)0.9484060.01890550.168200.0000R-squared0.987058Meandependentvar86.40203AdjustedR-squared0.986666S.D.dependentvar26.56943S.E.ofregression3.068065Akaikeinfocriterion5.135417Sumsquaredresid310.6298Schwarzcriterion5.224294Loglikelihood-87.86979Hannan-Quinncriter.5.166097F-statistic2516.848Durbin-Watsonstat2.097157Prob(F-statistic)0.0000003.78310.9484Xt t(1.8710)(0.0189)t=(-2.022)(50.1682)R2=0.9871R2=0.9867 F=2516.848DW=2.0971571355%DW统计表可知dL==模型中DW=2.0972>dU,说明广义差分模型中已无自相关。同时,判定系数R2、t、F统计量均达到理想水平。由差分方程式可以得出:ˆˆ*/(ˆ)0 0
3.7831 10.72855所以最终的消费模型为:
ˆˆ1 1
0.948413.93660.9484Xt t由上述模型可知,美国个人实际可支配收入每增加1元,个人实际消费支出平均增加0.9484元。练习题6.2参考解答:12中不存在自相关。DW1中,DW=0.8252显著水平的DW统计表可知dL
1.106,dU
1.371,DWdL
,因此模型1存在正自相关;而在模型2中,DW=1.82,查5%显著水平的DW统计表可知dL
0.982,d 1.539,dU
DW4dU
,因此模型2不存在自相关。虚假自相关是由模型设定失误所造成的自相关,主要包括遗漏某些重要的解释变量或者模型函数形式不正确,因此在区分虚假自相关和真正自相关是主要从这两个方面来判断,即根据经济意义检查解释变量是否遗漏了重要的变量,或者根据数据的数字特征检验模型形式的设定是否恰当。练习题6.3参考解答:(1)先对数据进行处理,收入-消费模型(个人实际收入与个人实际消费支出)个人实际消费支出=人均生活消费支出/商品零售物价指数*100建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:05/06/10 Time:23:20Sample:20012019Includedobservations:19CoefficientStd.Errort-StatisticProb.X 0.6904880.01287753.620680.0000C 79.9300412.399196.4463900.0000R-squared0.994122Meandependentvar700.2747AdjustedR-squared0.993776S.D.dependentvar246.4491S.E.ofregression19.44245Akaikeinfocriterion8.872095Sumsquaredresid6426.149Schwarzcriterion8.971510Loglikelihood-82.28490Hannan-Quinncriter.8.888920F-statistic2875.178Durbin-Watsonstat0.574663Prob(F-statistic)0.000000估计结果如下
79.9300.690Xt tSe(12.399)(0.013)t(6.446)(53.621)R20.994 DW0.575
(6.38)(2)DW=0.575,对样本量为36、一个解释变量的模型、5%显著水平的DW统计表可知d 1.18,d 1.40,DW1.18L U ,说明误差项存在正自相关。(3)采用广义差分法使用普通最小二乘法估计
的估计值,得et
t1由上式可知
Se(0.178t(3.701)=0.657352,对原模型进行广义差分,得到广义差分方程:Y0.657352Yt t
(10.657352)+(X1 2
t
)ut
0.657352ut1回归结果如下:DependentVariable:Y-0.657352*Y(-1)Method:LeastSquaresDate:05/06/10 Time:23:25Sample(adjusted):2002Includedobservations:18afteradjustmentsCoefficient
Std.
t-Statistic
Prob.CX-0.657352*X(-1)
35.977610.668695
8.1035460.020642
4.43973732.39512
0.00040.0000R-squared0.984983Meandependentvar278.1002AdjustedR-squared0.984044S.D.dependentvar105.1781S.E.ofregression13.28570Akaikeinfocriterion8.115693Sumsquaredresid2824.158Schwarzcriterion8.214623Loglikelihood-71.04124Hannan-Quinncriter.8.129334F-statistic1049.444Durbin-Watsonstat1.830746Prob(F-statistic)0.000000估计结果如下
^Y*35.97761+0.668695X*^t tt(4.439737) (32.39512)R20.984983 DW=1.830746d 1.158
d DW1.834dDW=1.830,已知L U在广义差分模型中已无自相关。由差分方程式可以得出:
,模型中U
U因此,ˆˆ0 0
/(ˆ)
35.9776110.668695
(错误)ˆ ˆ0 0
/(1ˆ)
35.9776110.657352
(正确)ˆˆ*1 1
0.668695因此,修正后的回归模型应为Y108.5940.668695Xt t由上述模型可知,个人实际收入每增加1元,个人实际支出平均增加0.668695元。参考答案原题建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:11/26/10 Time:19:47Sample:19701994Includedobservations:25CoefficientStd.Errort-StatisticProb.X 1.5297120.05097630.008460.0000C -68.1602615.26513-4.4650960.0002R-squared0.975095Meandependentvar388.0000AdjustedR-squared0.974012S.D.dependentvar43.33397S.E.ofregression6.985763Akaikeinfocriterion6.802244Sumsquaredresid1122.420Schwarzcriterion6.899754Loglikelihood-83.02805Hannan-Quinncriter.6.829289F-statistic900.5078Durbin-Watsonstat0.348288Prob(F-statistic)0.00000068.060261.529712Xt tt=(-4.46509)(30.00846)R2=0.975R2=0.974 F=900.5078DW=0.348288给定n=25,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.288,dL
1.454。模型中DWdL
,所以可以判断模型中存在正自相关。对模型的修正采广义差分法修正自相关:使用普通最小二乘法估计,得e0.873772et tt6.734519由上式可知ˆ=0.873772,对原模型进行广义差分,得到广义差分方程:Y0.873772Yt t
(10.873772)+(X1 2
t
)ut
0.873772ut1回归结果如下:DependentVariable:Y-0.873772*Y(-1)Method:LeastSquaresDate:11/26/10 Time:20:04Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient
Std.
t-Statistic
Prob.X-0.873772*X(-1)C
1.2520333.198065
0.1877947.790739
6.6670590.410496
0.00000.6854R-squared0.668922Meandependentvar54.86397AdjustedR-squared0.653873S.D.dependentvar6.671848S.E.ofregression3.925217Akaikeinfocriterion5.652375Sumsquaredresid338.9612Schwarzcriterion5.750547Loglikelihood-65.82850Hannan-Quinncriter.5.678420F-statistic44.44968Durbin-Watsonstat1.322343Prob(F-statistic)0.000001ˆˆ*3.1980651.252033X*t tt=(0.410496)(6.667059)R2=0.669R2=0.654 F=44.450DW=1.322343给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dˆˆˆ*/(ˆ)1.252033/(0.873772)9.918820 0ˆˆ*3.198065
1.446。模型中dL
DWdU
,DW值落在了无法判断的区域。1 19.91882t t一阶差分法对模型进行一阶差分,回归结果如下:DependentVariable:Y-Y(-1)Method:LeastSquaresDate:11/26/10 Time:20:37Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient
Std.
t-Statistic
Prob.X-X(-1)
1.333333
0.131422
10.14543
0.0000R-squared0.652682Meandependentvar6.208333AdjustedR-squared0.652682S.D.dependentvar6.678839S.E.ofregression3.936084Akaikeinfocriterion5.619023Sumsquaredresid356.3333Schwarzcriterion5.668109Loglikelihood-66.42828Hannan-Quinncriter.5.632046Durbin-Watsonstat1.591830给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dL
1.446。模型中dU
DW4dU
,因此模型已不存在自相关。德宾两步法建立辅助回归方程Yt
(1)X1 2
2
Xt
vt
,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:11/26/10 Time:20:43Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficientStd.Errort-StatisticProb.C-7.63364112.84334-0.5943660.5589X1.1726220.1885276.2199190.0000X(-1)-1.0062720.254581-3.9526660.0008Y(-1)0.8962550.1239097.2331720.0000R-squared0.992083Meandependentvar391.6667AdjustedR-squared0.990896S.D.dependentvar40.10927S.E.ofregression3.827019Akaikeinfocriterion5.673061Sumsquaredresid292.9215Schwarzcriterion5.869403Loglikelihood-64.07673Hannan-Quinncriter.5.725151F-statistic835.4552Durbin-Watsonstat1.369050Prob(F-statistic)0.000000把Yt1
的回归系数
看做的一个估计值,之后进行广义差分,回归模型为:Y0.896255Yt t
(10.896255)+(X1 2
t
)ut
0.896255ut1回归结果如下:DependentVariable:Y-0.896255*Y(-1)Method:LeastSquaresDate:11/26/10 Time:20:47Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient
Std.
t-Statistic
Prob.X-0.896255*X(-1)C
1.2010314.652899
0.1893056.595502
6.3444250.705466
0.00000.4879R-squared0.646596Meandependentvar46.19771AdjustedR-squared0.630532S.D.dependentvar6.352384S.E.ofregression3.861224Akaikeinfocriterion5.619501Sumsquaredresid327.9990Schwarzcriterion5.717672Loglikelihood-65.43401Hannan-Quinncriter.5.645545F-statistic40.25173Durbin-Watsonstat1.305817Prob(F-statistic)0.000002给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dL
1.446。模型中dL
DWdU
,DW值落在了无法判断的区域。XY之后建立回归模型,回归结果如下:DependentVariable:YMethod:LeastSquaresDate:12/04/10 Time:11:21Sample:19701994Includedobservations:25CoefficientStd.Errort-StatisticProb.X 0.6374370.02124230.008460.0000C 50.874548.2910586.1360730.0000R-squared0.975095Meandependentvar298.2000AdjustedR-squared0.974012S.D.dependentvar27.97320S.E.ofregression4.509491Akaikeinfocriterion5.926864Sumsquaredresid467.7167Schwarzcriterion6.024374Loglikelihood-72.08580Hannan-Quinncriter.5.953909F-statistic900.5078Durbin-Watsonstat0.352762Prob(F-statistic)0.00000050.874540.637437Xt tt=(6.1361)(30.00846)R2=0.975R2=0.974 F=900.5078DW=0.352762给定n=25,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.288,dL
1.454DWdL
,所以可以判断模型中存在正自相关。对模型的修正1)采广义差分法修正自相关:使用普通最小二乘法估计,得e0.850961et tt6.682710=0.850961,对原模型进行广义差分,得到广义差分方程:Y0.850961Yt t
(10.850961)+(X1 2
t
)ut
0.850961ut1回归结果如下:DependentVariable:Y-0.850961*Y(-1)Method:LeastSquaresDate:12/04/10 Time:11:17Sample(adjusted):1971Includedobservations:24afteradjustmentsCoefficient
Std.
t-Statistic
Prob.X-0.850961*X(-1)C
0.53512513.97334
0.0747934.789436
7.1547962.917533
0.00000.0080R-squared0.699417Meandependentvar48.03762AdjustedR-squared0.685754S.D.dependentvar4.550930S.E.ofregression2.551144Akaikeinfocriterion4.790616Sumsquaredresid143.1833Schwarzcriterion4.888787Loglikelihood-55.48739Hannan-Quinncriter.4.816661F-statistic51.19110Durbin-Watsonstat2.377660Prob(F-statistic)0.000000ˆ*13.973340.535125X*t tt=(2.91753)(7.154796)R2=0.699R2=0.685 F=51.191DW=2.37766给定n=24,k'1,在0.05的显著水平下,查DW 统计表可知,d 1.273,dˆˆˆ*/(ˆ)13.97334/(0.850961)93.7562650 0ˆˆ*0.535125
1.446。模型中dU
DW4dU
,因此可以判断模型不存在自相关。1 193.756256t t参考解答:DependentVariable:LOG(Y)Method:LeastSquaresDate:05/07/10 Time:00:17Sample:19802000Includedobservations:21CoefficientStd.Errort-StatisticProb.C 2.1710410.2410259.0075290.0000LOG(X) 0.9510900.03889724.451230.0000R-squared0.969199Meandependentvar8.039307AdjustedR-squared0.967578S.D.dependentvar0.565486S.E.ofregression0.101822Akaikeinfocriterion-1.640785Sumsquaredresid0.196987Schwarzcriterion-1.541307Loglikelihood19.22825Hannan-Quinncriter.-1.619196F-statistic597.8626Durbin-Watsonstat1.159788Prob(F-statistic)0.000000ln2.1710410.95109lnXit=(9.007529)(30.00846)R2=0.969199R2=0.967578iF=597.8626DW=1.159788给定n=21,k1,在0.05的显著水平下ln2.1710410.95109lnXit=(9.007529)(30.00846)R2=0.969199R2=0.967578iF=597.8626DW=1.159788d 1.221 dL
DW1.159788
L,所以可以判断模型中存在正自相关。采用广义差分法修正自相关: 使用普通最小二乘法估计
的估计值et
,得0.400234et1由上式可知
t1.722522=0.400234,对原模型进行广义差分,得到广义差分方程:lnYt
0.400234lnYt1
(10.400234)+1
(lnXt
t
)ut
0.400234ut1回归结果如下:DependentVariable:LOG(Y)-0.400234*LOG(Y(-1))Method:LeastSquaresDate:05/07/10 Time:00:21Sample(adjusted):1981Includedobservations:20afteradjustmentsCoefficient
Std.Error
t-Statistic
Prob.CLOG(X)-0.400234*LOG(X(-1))
1.4770950.905989
0.2256360.059767
6.54637215.15871
0.00000.0000R-squared0.927357Meandependentvar4.882162AdjustedR-squared0.923321S.D.dependentvar0.344052S.E.ofregression0.095271Akaikeinfocriterion-1.769534Sumsquaredresid0.163380Schwarzcriterion-1.669961Loglikelihood19.69534Hannan-Quinncriter.-1.750096F-statistic
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《cognos培训材料V》课件
- 《圆和圆的位置关系》课件
- 企业文化与团队协作模板
- 2025年数控裁板锯项目发展计划
- 绿色商务风地产家居市场分析报告主题
- 广州正常人长波紫外线最小持续性黑化量的测定与分析
- 对读世界史的几点意见
- 小学奖学金申请书
- 银行党员预备申请书
- 几百几十数乘以一位数质量检测口算题带答案
- 2024年松溪县城投实业集团有限公司招聘笔试冲刺题(带答案解析)
- 《中电联团体标准-220kV变电站并联直流电源系统技术规范》
- 新版ISO22301BCM体系手册
- 55项临床护理技术操作标准(49-55项)
- 《公路智慧养护信息化建设指南(征求意见稿)》
- 《书籍装帧设计》 课件 项目4 书籍装帧版式设计
- 中国主要蜜源植物蜜源花期和分布知识
- 电化学免疫传感器的应用
- (2024年)面神经炎课件完整版
- 数据中心基础知识培训-2024鲜版
- 血浆置换的护理
评论
0/150
提交评论