麻醉学:血流动力学监测课件_第1页
麻醉学:血流动力学监测课件_第2页
麻醉学:血流动力学监测课件_第3页
麻醉学:血流动力学监测课件_第4页
麻醉学:血流动力学监测课件_第5页
已阅读5页,还剩277页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

血流动力学监测Hemodynamicmonitoring血流动力学监测Hemodynamicmonitoring主要内容血流动力学的基本概念监测技术各种压力波形的识别及分析临床应用主要内容血流动力学的基本概念血流动力学监测的基本概念定义血流动力学血液流动的物理学,血流动力学监测对影响循环系统的物理学因素的监测及解释物理概念流量(Q)压力(P)阻力(R)血流动力学监测的基本概念定义物理概念压力(P)=流量(Q)×阻力(R)P:CVP、LAP/PAWP、MPAP、MAPQ:COR:SVR、PVR容量与压力的关系阻力与压力的关系阻力与管径的关系物理概念压力(P)=流量(Q)×阻力(R)生理概念血压=血液流速(心输出量)×循环阻力循环系统是一个连续、相对封闭的管道系统产生血液流动的压力梯度来自于心脏运动产生的压力梯度血管管径能够主动地发生变化神经内分泌活动肾素-血管紧张素-醛固酮系统生理概念血压=血液流速(心输出量)×循环阻力IntravascularvolumeMyocardialcontractionandheartrateVasoactivity4factorsthataffectingthehaemodynamicconditionsIntravascularvolumeMyocardial常用压力监测项目CVP/RAPLAP/PAWPABPPAP常用压力监测项目CVP/RAP心脏功能的影响及其调节因素频率/节律前负荷后负荷收缩力心脏功能的影响及其调节因素频率/节律血流动力学监测COMAPSVR=xSVHRx后负荷前负荷心肌收缩力血流动力学监测COMAPSVR=xSVHRx后负荷前负荷心肌前负荷定义:心肌纤维在收缩前的张力决定因素:LVEDV/LVEDPStarling定律:心肌收缩产生的能量是心肌纤维初长度的函数心肌收缩力与心肌纤维收缩的初长度呈正相关前负荷定义:心肌纤维在收缩前的张力心输出量CO=HR×SV4-8L/minSV60-80ml心输出量不等于心肌收缩力SV的影响因素:前负荷后负荷收缩力心输出量CO=HR×SV后负荷定义:抵抗心脏排血的压力或阻力影响因素:血管内径及血液粘滞性阻力(R=△P/Q):SVR=[(MAP-RAP)/CO]×80PVR=[(MPAP-LAP)/CO]×80后负荷定义:抵抗心脏排血的压力或阻力心肌收缩力迄今为止,有关心肌收缩力的监测大多是间接实现的射血分数(EjectionFraction)一定程度上反映心肌收缩功能不反映心肌的舒张功能心肌收缩力迄今为止,有关心肌收缩力的监测大多是间接实现的SvO2监测监测部位:肺动脉影响因素:CO、SaO2、Hgb、VO2意义:反映机体组织水平的氧输送及摄合平衡≥60%用于计算氧输送(DO2)及摄取(VO2)SvO2监测监测部位:肺动脉氧代谢公式氧含量:CaO2=Hb×1.36×SaO2+0.003×PaO2CvO2=Hb×1.36×SvO2+0.003×PvO2氧输送:DO2=CO×CaO2氧摄取:VO2=CO×(CaO2-CvO2)氧代谢公式氧含量:影响SvO2的因素动脉血氧饱和度(SaO2

)心输出量血红蛋白组织氧摄取能力影响SvO2的因素动脉血氧饱和度(SaO2)常用公式及参考范围常用公式及参考范围常用氧代谢参数及参考范围常用氧代谢参数及参考范围不同休克的变化模式不同休克的变化模式血流动力学监测技术血流动力学监测技术血流动力学监测组成换能器将物理信号(如压力、温度、光)转换为电信号放大器汇集电信号,通过电缆传递给显示设备显示器管道及冲洗系统保持通畅压力袋肝素血流动力学监测组成换能器麻醉学:血流动力学监测课件麻醉学:血流动力学监测课件OldequipmentsArteriallineRealtimeSBP,DBP,MAPPulsepressurevariation(PP)

ΔPP(%)=100×(PPmax-PPmin)/([PPmax+PPmin]/2)>=13%(insepticpts,)discriminatebetweenfluidresponderandnonrespondaer

(sensitivity94%,specificity96%)AmJRespirCritCareMed2000,162:134-138OldequipmentsArteriallineΔPArteriallineAdvantagesEasysetupRealtimeBPmonitoringBeattobeatwaveformdisplayAllowregularsamplingofbloodforlabtestsDisadvantagesInvasiveRiskofhaematoma,distalischemia,pseudoaneurysmformationandinfectionArteriallineAdvantages动脉压监测适应症持续血压监测需要多次抽血动脉压监测适应症持续血压监测动脉测压部位桡动脉、肱动脉、股动脉Allen’stest:同时压迫桡、尺动脉不断抓握动作直至手指发白放开尺动脉肢端色泽在5-7秒恢复动脉测压部位桡动脉、肱动脉、股动脉Allen’stestAllen’stest护理注意事项波形变化与无创血压对照管道连接检查肢端循环、活动及感觉正确设定报警系统(±10to20mmHg)穿刺部位固定,防止渗血、血肿护理注意事项波形变化正确的动脉压波形快速上升收缩期开始重搏切迹主动脉瓣关闭收缩结束&舒张期开始舒张末期波形最低点正确的动脉压波形快速上升中心静脉穿刺中心静脉穿刺麻醉学:血流动力学监测课件麻醉学:血流动力学监测课件锁骨下静脉穿刺锁骨下静脉穿刺麻醉学:血流动力学监测课件呼吸影响自主呼吸时,吸气时胸腔及心包压力下降CVP随之下降(但实际的跨壁压力可能上升)机械通气时的变化与之相反。呼吸末胸腔及心包压力接近于大气压呼吸影响自主呼吸时,吸气时胸腔及心包压力下降中心静脉导管定位中心静脉导管定位静脉导管位置异常静脉导管位置异常静脉导管位置异常静脉导管位置异常静脉导管位置异常静脉导管位置异常前负荷的维持:指南建议复苏目标(1C)中心静脉压(CVP)8–12mmHg*平均动脉压

65mmHg尿量

0.5ml/kg/hr中心静脉(上腔静脉)血氧饱和度

70%,或混合静脉血氧饱和度

65%前负荷的维持:指南建议复苏目标(1C)容量负荷试验:判断标准每10分钟测定CVPCVP2mmHg继续快速补液CVP2–5mmHg暂停快速补液,等待10分钟后再次评估CVP5mmHg停止快速补液每10分钟测定PAWPPAWP3mmHg继续快速补液PAWP3–7mmHg暂停快速补液,等待10分钟后再次评估PAWP7mmHg停止快速补液容量负荷试验:判断标准每10分钟测定CVP每10分钟测定PPulmonaryarterialcatheterPulmonaryarterialcatheterIndicationsforPAPmonitoringShockofalltypesAssessmentofcardiovascularfunctionandresponsetotherapyAssessmentofpulmonarystatusAssessmentoffluidrequirementPerioperativemonitoringIndicationsforPAPmonitoringClinicalapplicationsofPACPACcangeneratelargenumbersofhaemodynamicvariablesCentralvenouspressure(CVP)Pulmonaryarterialocclusionpressure(PAOP)Cardiacoutput/cardiacindex(CO/CI)Strokevolume(SV)Rventricleejectionfraction/enddiatolicvolume(RVEF/RVEDV)Systemicvascularresistanceindex(SVRI)Pulmonaryvascularresistanceindex(PVRI)Oxygendelivery/uptake(DO2/VO2)=LAP=LVEDPBythermodilutionClinicalapplicationsofPACPASwan-Ganz导管结构Swan-Ganz导管结构Swan-Ganz导管放置Swan-Ganz导管放置1区、2区、3区1区、2区、3区Swan-Ganz导管放置Swan-Ganz导管放置漂浮导管放置漂浮导管放置心输出量-热稀释法经右房端口于4秒内注入5-10cc冰盐水导管顶部感应温度变化计算机自动计算出CO至少3次测量的平均值(差异<10%)心输出量-热稀释法经右房端口于4秒内注入5-10cc冰盐水Swan-Ganz导管定位Swan-Ganz导管定位Swan-Ganz的异常位置Swan-Ganz导管位置异常极其常见,发生率可达25%。Swan-Ganz的异常位置Swan-Ganz导管位置异常极Swan-Ganz的异常位置Swan-Ganz的异常位置Swan-Ganz导管并发症导管打结气囊破裂瓣膜损伤血小板减少症心动过缓血栓形成导管移位Swan-Ganz导管并发症导管打结PatientwithhypotensionHypovolemiaLowCVPLowCIHighSVRIConsiderfluidchallengeCardiogenicHighCVPLowCIHighSVRIConsiderinotopic/IABPVasogenicLowCVPHighCILowSVRIConsidervasopressorPatientwithhypotensionHypovoMixedVenousSaturationSvO2MeasuredinpulmonaryarterybloodMarkerofthebalancebetweenwholebodyO2delivery(DO2)andO2consumption(VO2)VO2=DO2*(SaO2–SvO2)Infact,DO2determinatebyCO,HbandSaO2.Therefore,SvO2affectedbyCOHbArterialoxygensaturationTissueoxygenconsumptionMixedVenousSaturationSvO2MeMixedVenousSaturationSvO2NormalSvO270-75%DecreasedSvO2increasedconsumptionpain,hyperthermiadecreaseddeliverylowCOanemiahypoxiaIncreasedSvO2IncreaseddeliveryhighCOhyperbaricO2LowconsumptionsedationparalysiscyanidetoxicityMixedVenousSaturationSvO2NoPACAdvantagesProvidelotofimportanthaemodynamicparametersSamplingsiteforSvO2DisadvantagesCostlyInvasiveMultiplecomplications(egarrhythmia,catheterlooping,balloonrupture,PAinjury,pulmonaryinfarctionetc)MortalitynotreducedandcanbeevenhigherCritCareMed2003;31:2734-2741JAMA1996;276889-897PACAdvantagesAdvanceinhaemodynamicassessmentModificationofoldequipmentEchocardiogramandesophagealdopplerPulsecontouranalysisandtranspulmonarythermodilutionPartial

carbon

dioxide

rebreathingwithapplicationofFickprincipleElectrical

bioimpedanceAdvanceinhaemodynamicassesstruCCOMSsystemtruCCOMSsystemAsCOincrease,bloodflowovertheheattransferdeviceincreaseandthedevicerequiremorepowertokeepthetemp.differenceTherefore,providecontinuousCOdataAsCOincrease,bloodflowoveObjective

Tocomparemeasurementsofcardiacoutputusinganewpulmonaryarterycatheterwiththoseobtainedusingtwo"

goldstandard

"methods:theperiaortictransittimeultrasonicflowprobeandtheconventionalpulmonaryarterythermodilution.Design

Prospectiveclinicaltrial.Setting

CardiacsurgeryoperatingroomandsurgicalICUinauniversityhospital.Materialandmethods

Intheoperatingroom,anewpulmonaryarterycatheter(truCCOMSsystem)wasinsertedineightpatients.Aperiaorticflowprobewasinsertedinfourofthem.MeasurementsofcardiacoutputobtainedwiththetruCCOMScatheterandwiththeflowprobewerecomparedatdifferentphasesofthesurgicalprocedure.Intheintensivecareunit,thecardiacoutputdisplayedbythetruCCOMSmonitorwascomparedwiththevalueobtainedafterbolusinjectionperformedsubsequently.Results

Intheoperatingroom(70measurements),thecoefficientofcorrelationbetweencardiacoutputmeasuredbytheflowprobeandthetruCCOMSsystemwasr2=0.79,thebiaswas+0.11

l/minwithaprecisionof0.47

l/min,andlimitsofagreement–0.83to+1.05

l/min.Intheintensivecareunit(108measurements),thecoefficientofcorrelationbetweencardiacoutputmeasuredbythermodilutionandthetruCCOMSsystemwasr2=0.56,thebiaswas–0.07

l/min,theprecisionwas0.66

l/min,andthelimitsofagreementwere–1.39to+1.25

l/min.Conclusion

ThetruCCOMSsystemisareliablemethodofcontinuouscardiacoutputmeasurementincardiacsurgerypatients.Objective

TocomparemeasuremTruCCOMSsystemAdvantageContinuousCOmonitoringProvisionofimportanthaemodynamicparameterasPACDisadvantageInvasiveCostlyComplicationsassociatedwithPACuseTruCCOMSsystemAdvantageTransthoracicechoAssessmentofcardiacstructure,ejectionfractionandcardiacoutputBasedon2DanddopplerflowtechniqueTransthoracicechoAssessmento麻醉学:血流动力学监测课件麻醉学:血流动力学监测课件麻醉学:血流动力学监测课件EchodopplerultrasoundMeasurebloodflowvelocityinheartandgreatvesselsBasedonDopplereffect“Soundfreq.increasesasasoundsourcemovestowardtheobserveranddecreasesasthesouremovesaway”EchodopplerultrasoundMeasureFortransthoracicechoHaemodynamicassessmentforSVandCOFlowrate=CSAxflowvelocityBecauseflowvelocityvariesduringejection,individualvelocitiesofthedopplerspectrumneedtobesummedSumofvelocitiescalledvelocitytimeintegral(VTI)SV=CSAxVTICSA=(LVOTDiameter/2)2*ThereforeSV=D2*0.785*VTICO=SV*HRFortransthoracicechoHaemodyn麻醉学:血流动力学监测课件TransthoracicechoAdvantagesFasttoperformNoninvasiveCanassessvalvularstructureandmyocardialfunctionNoaddedequipmentneededDisadvantagesDifficulttogetgoodview(espwhoseonventilator/obese)CannotprovidecontinuousmonitoringTransthoracicechoAdvantagesTransesophagealechoCOassessmentbySimpsonordopplerflowtechniqueasmentionedbeforeBetterviewandmoreaccuratethanTTETime

consuming

and

require

a

high

level

of

operator

skills

and

knowledgeTransesophagealechoCOassessmEsophagealaorticdopplerUSDopplerassessmentofdecendingaorticflowCOdeterminatebymeasuringaorticbloodflowandaorticCSAAssuming

a

constant

partition

between

caudal

and

cephalic

blood

supply

areasCSAobtaineither

from

nomograms

or

by

M-modeUSProbeissmallerthanthatforTEECorrelatewellwithCOmeasuredbythermodilutionCritCareMed1998Dec;26(12):2066-72

DecendingaortaEsophagealaorticdopplerUSDoNormovolemiaNormovolemia麻醉学:血流动力学监测课件EsophagealaorticdopplerUSAdvantagesEasyplacement,minimaltrainingneeded(~12cases)providecontinuous,

real-timemonitoringLowincidenceofiatrogeniccomplicationsMinimalinfectiveriskDisadvantagesHighcostPoortoleranceatawakepatient,soforthoseintubatedProbe

displacementcanoccurduringprolongedmonitoringandpatient’sturningHighinterobservervariabilitywhenmeasuringchangesinSVinresponsetofluidchallengesEsophagealaorticdopplerUSAdPulsecontouranalysisArterialpressurewaveformdeterminatebyinteractionofstrokevolumeandSVRPulsecontouranalysisArterialPulsecontouranalysisBecausevascularimpedancevariesbetweenpatients,ithadtobemeasuredusinganothermodalitytoinitiallycalibratethePCAsystemThecalibrationmethodusuallyemployedwasarterialthermodilutionordyedilutiontechniquePCAinvolvestheuseofanarteriallyplacedcatheterwithapressuretransducer,whichcanmeasurepressuretracingsonabeat-to-beatbasisPiCCOandLiDCOarethetwocommonlyusedmodelPulsecontouranalysisBecauseWhatisthePiCCO-Technology?

PulseContourAnalysisCVBolusinjectionPULSIOCATHCALIBRATION

TranspulmonaryThermodilutioninjectiontTPt

ThePiCCO-Technologyisauniquecombinationof2techniquesforadvancedhemodynamicandvolumetricmanagementwithoutthenecessityofarightheartcatheterinmostpatients:WhatisthePiCCO-Technology?

ThermodilutionParametersCardiacOutput COGlobalEnd-DiastolicVolume GEDVIntrathoracicBloodVolume ITBVExtravascularLungWater EVLW*PulmonaryVascularPermeabilityIndex PVPI*CardiacFunctionIndex CFI

GlobalEjectionFraction GEFThePiCCOmeasuresthefollowingparameters:

PulseContourParametersPulseContourCardiacOutput PCCOArterialBloodPressure APHeartRate HRStrokeVolume SVStrokeVolumeVariation SVVPulsePressureVariation PPVSystemicVascularResistance SVRIndexofLeftVentricularContractility dPmx*ParametersmeasuredwiththePiCCO-TechnologyThermodilutionParametersThe

Mostofhemodynamicunstableand/orseverelyhypoxemicpatientsare instrumentedwith:

ThePiCCO-TechnologyusesanystandardCV-lineandathermistor- tippedarterialPiCCO-catheterinsteadofthestandardarterialline.Centralvenousline(e.g.forvasoactiveagentsadministration…)3HowdoesthePiCCO-Technologywork?Arterialline(accuratemonitoringofarterialpressure,bloodsamples…)

MostofhemodynamicunstableCVABFRPiCCOCatheter

Centralvenousline

(CV) PULSIOCATHthermodilutioncatheter

withlumenforarterialpressuremeasurement

Axillary: 4F(1,4mm) 8cm

Brachial: 4F(1,4mm) 22cm

Femoral:3-5F(0,9-1,7mm) 7-20cm

Radial: 4F(1,4mm) 50cmNoRightHeartCatheter!CVABFRPiCCOCatheter Centra麻醉学:血流动力学监测课件BolusInjectionLungsPiCCOCathetere.g.infemoralartery

Transpulmonarythermodilutionmeasurementonlyrequirescentralvenousinjectionofacold(<8°C)orroom-tempered(<24°C)salinebolus…A.ThermodilutionparametersLeftHeartRightHeartRAPBVEVLW*LALVEVLW*RVBolusLungsPiCCOCatheterTrTbinjectiontTranspulmonarythermodilution:CardiacOutputTb=BloodtemperatureTi=InjectatetemperatureVi=Injectatevolume∫∆Tb.

dt=AreaunderthethermodilutioncurveK=Correctionconstant,madeupofspecificweightandspecificheatofbloodandinjectateCOCalculation: Areaunderthe ThermodilutionCurve

Aftercentralvenousinjectionoftheindicator,thethermistoratthetipofthearterial

cathetermeasuresthedownstreamtemperaturechanges.Cardiacoutputiscalculatedbyanalysisofthethermodilutioncurveusingamodified

Stewart-Hamiltonalgorithm:TbinjectiontTranspulmonarytheAdvancedThermodilutionCurveAnalysisTranspulmonarythermodilution:Volumetricparameters1Mtt:MeanTransittimetimewhenhalfoftheindicatorhaspassedthepointofdetectioninthearteryDSt:DownSlopetimeexponentialdownslopetimeofthethermodilutioncurveForthecalculationsofvolumes…lnTbinjectionrecirculationMTtte-1DStTb…areimportant.…and…

Allvolumetricparametersareobtainedbyadvancedanalysisofthethermodilutioncurve:AdvancedThermodilutionCurveRAEDVThermodilutioncurvemeasuredwitharterialcatheterCVBolusInjectionLAEDVLVEDVRVEDVRightHeartLeftHeartLungsAfterinjection,theindicatorpassesthefollowingintrathoraciccompartments:

Theintrathoraciccompartmentscanbeconsideredasaseriesof“mixingchambers”forthedistributionoftheinjectedindicator(intrathoracicthermalvolume).ITTVPTV

Thelargestmixingchamberinthisseriesarethelungs,heretheindicator(cold)hasitslargestdistributionvolume(largestthermalvolume).Transpulmonarythermodilution:Volumetricparameters2RAEDVThermodilutioncurvemeasITTV=CO*MTtTDaPTV=CO*DStTDaITBV

=1.25*GEDVEVLW*=ITTV-ITBVGEDV

=ITTV-PTVRAEDVRVEDVLAEDVLVEDVRAEDVRVEDVLAEDVLVEDVPBVRAEDVRVEDVLAEDVLVEDVPTVPTVEVLW*EVLW*CalculationofvolumesITTV=CO*MTtTDaPTV=CO*PulmonaryVascularPermeabilityIndex

PulmonaryVascularPermeabilityIndex(PVPI*)istheratioofExtravascular LungWater(EVLW*)topulmonarybloodvolume(PBV).Itallowstoidentifythe typeofpulmonaryoedema.PulmonarvBlood

VolumeHydrostaticpulmonaryedemaPermeabilitypulmonaryedemaPVPI*=PBVEVLW*normalelevatedelevatedPVPI*=PBVEVLW*elevatedelevatednormalPVPI*=PBVEVLW*normalnormalnormalPBVEVLW*PBVEVLW*PBVEVLW*NormalLungExtraVascularLungWaterPulmonaryVascularPermeabilitGlobalEjectionFraction(GEF)(transpulmonarythermodilution)GEF=GEDV4xSVRVEF=RVEDVSVLVEF=LVEDVSVRVejectionfraction(RVEF)(pulmonaryarterythermodilution)LVejectionfraction(LVEF)(echocardiography)12&3GlobalEjectionFractionRightHeartLeftHeartLungsPBVEVLW*EVLW*RAEDVRVEDVLVEDVStrokeVolumeSVLAEDV

EjectionFraction:StrokeVolumerelatedtoEnd-DiastolicVolumeGlobalEjectionFraction(GEF)PulseContourAnalysis-Principlet[s]P[mmHg]AreaunderpressurecurveShapeofpressurecurvePCCO=cal•HR•SystoleP(t)SVR+C(p)•dPdt()dtAorticcomplianceHeartratePatient-specificcalibrationfactor(determinedbythermodilution)PulseContourAnalysis-PrincIndexofLeftVentricular

Contractility*t[s]P[mmHg]

dPmx*= dP/dtmaxofarterialpressurecurve

dPmx*representsleftventricularpressurevelocityincreaseandthusisaparameterofmyocardialcontractilityIndexofLeftVentricularContSVmaxSVminSVmeanSVmax–SVminSVV=SVmeanStrokeVolumeVariation:Calculation

StrokeVolumeVariation(SVV)representsthevariationofstrokevolume(SV)overthe

ventilatorycycle.

SVVis......measuredoverlast30swindow…onlyapplicableincontrolledmechanicallyventilatedpatientswithregularheartrhythmSVmaxSVminSVmeanSVmax–SVminSPulsePressureVariation:Calculation

PPmax–PPminPPV=PPmeanPPmaxPPmeanPPmin

Pulsepressurevariation(PPV)representsthevariationofthepulsepressureovertheventilatorycycle.

PPVis...…measuredoverlast30swindow…onlyapplicableincontrolledmechanicallyventilatedpatientswithregularbeatrhythmPulsePressureVariation:CalcWhatisthecurrentsituation?.………..……..………….CardiacOutput!Whatisthepreload?.……………….....…GlobalEnd-DiastolicVolume!WillvolumeincreaseCO?....………...……….StrokeVolumeVariation!Whatistheafterload?……………..…..SystemicVascularResistance!Arethelungsstilldry?...…….……...…..….ExtravascularLungWater!*ClinicalapplicationCOGEDVSVVSVREVLW*Whatisthecurrentsituation?

GlobalEnd-DiastolicVolume,GEDVand

IntrathoracicBloodVolume,ITBVhaveshowntobefarmoresensitiveandspecifictocardiacpreloadcomparedtothestandardcardiacfillingpressuresCVP+PCWPaswellasrightventricular enddiastolicvolume. ThestrikingadvantageofGEDVandITBVisthattheyarenotadverselyinfluencedbymechanicalventilationCritCare4,2000IntCareMed2002EurJAnaesth19,2002AnesthAnalg95,2002 GlobalEnd-DiastolicVolume,

ExtravascularLungWater,EVLW*hasshowntohaveaclearcorrelationtoseverityofARDS,lengthofventilationdays,ICU-StayandMortalityandissuperiortoassessmentoflungedemabychestx-rayandclearlyindicatesfluid

overloadMortalityasfunctionofELWI*in373criticallyillICUpatientsSakkaetal,Chest2002ExtravascularLungWater,ERelevanceofEVLW-Management101patientswithpulmonaryedemawererandomizedtoapulmonaryarterycatheter(PAC)managementgroupinwhomfluidmanagementdecisionswereguidedbyPCWPmeasurementsandtoanExtravascularLungWater(EVLW*)managementgroupusingaprotocolbasedonthebedsidemeasurementofEVLW*.ICUdaysandventilator-daysweresignificantlyshorterinpatientsoftheEVLW*group.Mitchelletal,AmRevRespDis145:990-998,1992

22days15days9days7days**VentilationdaysICUdaysn=101EVLW*groupPACgroupEVLW*groupPACgroupRelevanceofEVLW-Management1SVVandPPV–ClinicalStudiesBerkenstadtetal,AnesthAnalg92:984-989,2001

SensitivitySpecificityCentralVenousPressure(CVP)cannotpredictwhethervolumeloadleadstoanincreaseinstrokevolumeornot.---CVP__SVV10,20,40,60,810,500

SVVandPPVareexcellentpredictorsofvolumeresponsiveness.

SVVandPPV–ClinicalStudiesNormalranges

Parameter Range

UnitCI 3.0–5.0 l/min/m2SVI 40–60 ml/m2

GEDI 680–800 ml/m2ITBI 850–1000 ml/m2ELWI* 3.0–7.0 ml/kgPVPI* 1.0–3.0SVV 10 %PPV 10 %GEF 25–35 %CFI 4.5–6.5 1/minMAP 70–90 mmHgSVRI 1700–2400 dyn*s*cm-5*m Normalranges Parameter Range Decisiontreeforhemodynamic/volumetricmonitoringCI(l/min/m2)GEDI(ml/m2)orITBI(ml/m2)

ELWI*(ml/kg)(slowlyresponding)>3.0<3.0>700>850<700<850>700>850<700<850ELWI*(ml/kg)GEDI(ml/m2)orITBI(ml/m2)CFI(1/min)orGEF(%)<10>10<10<10<10>10>10>10V+V+!V+!V+CatCatOK!V->700>850700-800850-1000>4.5>25>5.5>30>4.5>25

700-800

850-1000Cat>5.5>30>700>850

700-800

850-1000

700-800

850-100010101010V-V+=volumeloading(!=cautiously)V-=volumecontractionCat=catecholamine/cardiovascularagents**SVVonlyapplicableinventilatedpatientswithoutcardiacarrhythmia>700>850

<10Optimiseto

SVV**(%)<10<10<10RESULTSTARGETTHERAPY1.2.<10<10<10<10DecisiontreeforhemodynamicLiDCOsystemLiDCOsystemPulsecontouranalysisAdvantagesAlmostcontinuousdataofCO/SV/SVvariationProvideinformationofpreloadandEVLWDisadvantagesMinimalinvasiveOptimalarterialpulsesignalrequiredArrhythmiaDampingUseofIABPPulsecontouranalysisAdvantagPartial

carbon

dioxide

rebreathingwithapplicationofFickprincipleFickprincipleisusedforCOmeasurementCO=VO2/(CaO2–CvO2)=VCO2/(CvCO2–CaCO2)BasedontheassumptionthatbloodflowthroughthepulmonarycirculationkeptconstantandabsenceofshuntProportionaltochangeofCO2eliminationdividedbychangeofETCO2resultingfromabriefrebreathingperiodThechangewasmeasuredbyNICOsensorPartialcarbondioxiderebreat麻醉学:血流动力学监测课件S=slopeofCO2dissociationcurveassumethatthemixedvenousco2concentration(Cvco2)remainsunchangedbetweenbaselineandrebreathingconditionsS=slopeofCO2dissociationPartial

carbon

dioxide

rebreathingwithapplicationofFickprincipleAdvantagesNoninvasiveDisadvantagesOnlyforthosemechanicallyventilatedpatientVariationofventilationmodalityandpresenceofsignificantlydiseasedlungaffecttheCOreadingNotcontinuousmonitoringPartialcarbondioxiderebreatElectrical

bioimpedanceMadeusesofconstant

electrical

current

stimulation

for

identification

of

thoracic

or

body

impedance

variations

induced

by

vascular

bloodflowElectricalbioimpedanceMadeus

Electrodesareplacedinspecificareasontheneckandthorax

Alow-gradeelectricalcurrent,from2-4mAisemitted,andreceivedbytheadjacentelectrodes

Impedancetothecurrentflowproducesawaveform

Throughelectronicevaluationofthesewaveforms,thetimingofaorticopeningandclosingcanbeusedtocalculatetheleftventricularejectiontimeandstrokevolumeElectrodesareplacedinspecElectrical

bioimpedanceSomereportsameclinicalaccuracyasthermodilutiontechniqueCritCareMed22:1907-1912Chest111:333-337CritCareMed14:933-935OtherreportpooragreementinthosehaemodynamicallyunstableandpostcardiacsurgeryCritCareMed21:1139-1142CritCareMed23:1667-1673NewlygenerationEBdeviceusingupgradedcomputertechnologyandrefinedalgorithmstocalculateCOandgetbetterresultsCurrOpinCardio19:229-237IntCareMed32:2053-2058ElectricalbioimpedanceSomereElectrical

bioimpedanceAdvantageNoninvasiveDisadvantageReliabilityincriticallyillpatientsstillnotveryclearElectricalbioimpedanceAdvantaInconclusionHaemodynamicmonitoringenableearlydetectionofchangeinpatient’sconditionsNewtechniquesprovidereasonablygoodresultsandlessinvasiveAlwayscorrelatethereadings/findingswithclinicalpicturesinordertoprovidethebesttreatmentoptions

InconclusionHaemodynamicmoni压力波形的识别及分析压力波形的识别及分析动脉压力波形1-收缩压2-重搏切迹3-舒张压动脉压力波形1-收缩压中心静脉压

(RAP/CVP)参考范围:5-10

cmH2O波形成份:a-右房收缩c-三尖瓣关闭v-心房充盈y-三尖瓣开放z-最接近右心室舒张末压(RVEDP)中心静脉压

(RAP/CVP)参考范围:5-10cmH2中心静脉波形a:出现于P波后,相当于右心室舒张末;c:出现于QRS波后;v:T波之后a-atrialc-contractionv-venous中心静脉波形a:出现于P波后,相当于右心室舒张末;右心室压力低压系统正常收缩压=20-30mmHg正常舒张压=2-8mmHg(近似于右房压)右心室压力低压系统右心室波形1-等容收缩期2-快速射血期3-减慢射血期4-等容舒张期5-舒张早期6-心房收缩(a波)7-舒张末期右心室波形1-等容收缩期4-等容舒张期肺动脉压波形低压系统正常收缩压=20-30mmHg(=SysRV)正常舒张压=8-15mmHg(PAD)降支出现重搏切迹—肺动脉瓣关闭肺动脉压波形低压系统肺动脉压力波形1-收缩压2-重搏切迹3-舒张压肺动脉压力波形1-收缩压肺动脉压波形肺动脉压波形PAWP充气时间<5-10秒波形近似于右心房压力波形正常值=8-12mmHgPAWP充气时间<5-10秒PAWP波形PAWP波形PAWPPAWP反应左心室舒张末期压(LVEDP)PAD/PAWP的关系1.PAD>>>PAWP—1-4mmHg2.PAD/PAWP差异增大PVR增加血流增加心率增加PAWPPAWP反应左心室舒张末期压(LVEDP)PAWP波形1-a波2-x降支3-v波4-y降支PAWP波形1-a波PAWP->PAP1-a波2-c波3-v波4-收缩压5-舒张压PAWP->PAP1-a波57男性,发热、腹痛36小时腹部平片:膈下游离气体剖腹探查:乙状结肠憩室破裂既往史:特发性心肌病BP70/40CVP4PA17/9CO1.9SVR1800

a)去甲肾上腺素

b)硝酸甘油c)多巴酚丁胺d)扩容e)限制液体摄入57男性,发热、腹痛36小时a)去甲肾上腺素2000ml/hBP80/45CVP22PA35/17CO2.1SVR1400a)alpha激动剂

b)再次给予液体负荷c)可能是感染性休克d)可能是心功能衰竭e)循环超负荷,利尿2000ml/ha)alpha激动剂MAP50mmHgCVP8mmHgPAOP6mmHgCO7L/min梗阻性休克心原性休克心原性休克伴低血容量分布性休克低血容量性休克分布性休克MAP50mmHg分布性休克病例2:现病史男性,70岁,2001年1月9日入院咳嗽,咳痰12天,发热4天,呼吸困难1天12天前咳嗽,咳黄粘痰,伴全身乏力4天前寒战高热,体温39.5CCXR:肺部感染,右上肺膨胀不全头孢呋肟治疗无效1天前呼吸困难,紫绀,伴血压下降(50/20mmHg)病例2:现病史男性,70岁,2001年1月9日入院病例2:入院情况入ICU时BT37.2CHR130bpmBP84/40mmHg(DA10g/kg/min)SpO278%双肺散在湿罗音病例2:入院情况入ICU时病例2:入院诊断诊断重度社区获得性肺炎急性呼吸功能衰竭感染性休克病例2:入院诊断诊断病例2:支持治疗呼吸功能支持(SIMV+PSV)FiO2100%,PEEP10cmH2OSpO292%循环支持羟基淀粉500ml扩容无效DA13g/kg/minNE1.2g/kg/minBP110/70mmHg病例2:支持治疗呼吸功能支持(SIMV+PSV)病例2:血流动力学监测放置肺动脉漂浮导管HR 130 MAP 71CVP 9 PAWP 9CI 1.96SVRI 2524 PVRI 529NE 1.0病例2:血流动力学监测放置肺动脉漂浮导管病例2:血流动力学监测扩容3000ml后HR 103 MAP 118CVP 12 PAWP 18CI 3.63SVRI 2182 PVRI 331NE 1.0病例2:血流动力学监测扩容3000ml后病例3:基本情况男性,74岁既往史I型糖尿病18年糖尿病肾病高血压病史5年口服络活喜,倍他乐克等药物平素BP160–180/70–90mmHg病例3:基本情况男性,74岁病例3:现病史2007年7月25日入院主因发现恶心,呕吐1周,伴心前区疼痛及少尿3天1周前出现恶心,呕吐,予对症治疗3天前出现心前区疼痛,憋闷,尿量减少静脉泵入NG100g/min,控制BP134/56mmHg血Cr861mol/L,UO<500ml/d(速尿400mg/d)血液透析,透析过程中出现心绞痛,持续不缓解病例3:现病史2007年7月25日入院病例3:体格检查GCS E4V5M6BT 36.2CHR 70bpmRR 20bpmBP 103/45mmHgSpO2 98–100%(鼻导管吸氧5lpm)病例3:体格检查GCS E4V5M6病例3:实验室检查CBC:WCC14.79,Hb102,plt215Chemistry(8–2):Na 140 mmol/LCl 97 mmol/LK 4.2 mmol/LCr 745 mol/LBUN 31.14 mmol/LCK-MB 6.8 u/LcTnI 11.56 g/LGLU 21.5 mmol/L病例3:实验室检查CBC:WCC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论