浙江省宁波北仑区六校联考2022年数学九年级上册期末预测试题含解析_第1页
浙江省宁波北仑区六校联考2022年数学九年级上册期末预测试题含解析_第2页
浙江省宁波北仑区六校联考2022年数学九年级上册期末预测试题含解析_第3页
浙江省宁波北仑区六校联考2022年数学九年级上册期末预测试题含解析_第4页
浙江省宁波北仑区六校联考2022年数学九年级上册期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或2.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根3.在单词mathematics(数学)中任意选择一个字母,字母为“m”的概率为()A. B. C. D.4.已知m,n是关于x的一元二次方程的两个解,若,则a的值为()A.﹣10 B.4 C.﹣4 D.105.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.6.下列图形中是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个7.函数的自变量的取值范围是()A. B. C. D.且8.已知是关于的一个完全平方式,则的值是().A.6 B. C.12 D.9.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°10.两个相邻自然数的积是1.则这两个数中,较大的数是()A.11 B.12 C.13 D.14二、填空题(每小题3分,共24分)11.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.

12.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.13.请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:______14.已知点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,且AB=AC=8千米,那么BC=________千米.15.如图所示,某河堤的横断面是梯形,,迎水坡长26米,且斜坡的坡度为,则河堤的高为米.16.将抛物线y=(x+2)25向右平移2个单位所得抛物线解析式为_____.17.如图,P是反比例函数图象在第二象限上一点,且矩形PEOF的面积是3,则反比例函数的解析式为___________.18.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.三、解答题(共66分)19.(10分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.20.(6分)计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos245°+sin60°tan45°+sin1.21.(6分)已知,且2x+3y﹣z=18,求4x+y﹣3z的值.22.(8分)计算:2cos45°tan30°cos30°+sin260°.23.(8分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.24.(8分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.25.(10分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:,,,)26.(10分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=1.②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,

∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).

故选D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.2、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.3、B【分析】根据概率公式进行计算即可.【详解】在单词“mathematics”中,共11个字母,其中有2个字母“m”,故从中任意选择一个字母,这个字母为“m”的概率是.故选:B.【点睛】本题考查概率的计算,熟记概率公式是解题关键.4、C【详解】解:∵m,n是关于x的一元二次方程的两个解,∴m+n=3,mn=a.∵,即,∴,解得:a=﹣1.故选C.5、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.6、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】从左起第2、4个图形是中心对称图形,故选B.【点睛】本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.7、C【解析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,且,

解得:.

故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.8、B【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍,故m=±1.【详解】∵(x±3)2=x2±1x+32,∴是关于的一个完全平方式,则m=±1.故选:B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.10、B【分析】设这两个数中较大的数为x,则较小的数为(x﹣1),根据两数之积为1,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两个数中较大的数为x,则较小的数为(x﹣1),依题意,得:x(x﹣1)=1,解得:x1=12,x2=﹣11(不合题意,舍去).故选:B.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.二、填空题(每小题3分,共24分)11、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】解:设AB=xcm,则DE=(6-x)cm,

根据题意,得解得x=1.

故选:1cm.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.13、y=x2-1(答案不唯一).【解析】试题分析:抛物线开口向上,二次项系数大于0,然后写出即可.抛物线的解析式为y=x2﹣1.考点:二次函数的性质.14、8【解析】因为点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,所以∠BAC=60°,因为AB=AC,所以△ABC是等边三角形,所以BC=AB=AC=8千米,故答案为:8.15、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米).考点:解直角三角形的应用.16、y=x2−1【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−1向右平移2个单位,得:y=(x+2−2)2−1,即y=x2−1.故答案是:y=x2−1.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.17、【分析】根据从反比例函数的图象上任意一点向坐标轴作垂线段,垂线段和坐标轴所围成的矩形的面积是,且保持不变,进行解答即可.【详解】由题意得,∵反比例函数图象在第二象限∴∴反比例函数的解析式为y=-.【点睛】本题属于基础应用题,只需学生熟练掌握反比例函数k的几何意义,即可完成.18、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)24【解析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考点:1.菱形的性质;2..矩形的判定.20、(1)0;(2).【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值化简得出答案.【详解】(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;=﹣1﹣++1=0;(2)cos245°+sin60°tan45°+sin1=()2+×1+()2=++=.【点睛】本题考查了实数运算,掌握实数运算是解题的关键.21、x=4,y=6,z=8.【分析】设=k,由1x+3y-z=18列出含k的等式,解出k,x,y,z,再代入所求即可.【详解】解:设=k,可得:x=1k,y=3k,z=4k,把x=1k,y=3k,z=4k代入1x+3y﹣z=18中,可得:4k+9k﹣4k=18,解得:k=1,所以x=4,y=6,z=8,把x=4,y=6,z=8代入4x+y﹣3z=16+6﹣14=﹣1.【点睛】本题考查的知识点是比例的性质,解题的关键是熟练的掌握比例的性质.22、【分析】将特殊角的三角函数值代入求解.【详解】解:原式=﹣+=.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是熟记特殊角的三角函数值.23、(1)见解析;(2).【解析】(1)根据等腰三角形的性质得∠ABC=∠A=30°,再由OB=OC和∠CBO=∠BCO=30°,所以∠OCA=120°﹣30°=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)在Rt△AOC中,根据含30度的直角三角形三边的关系得到CO=,所以弧BC的弧长=,然后根据圆锥的计算求圆锥的底面圆半径.【详解】(1)AC与⊙O相切,理由:∵AC=BC,∠ACB=120°,∴∠ABC=∠A=30°.∵OB=OC,∠CBO=∠BCO=30°,∴∠OCA=120°﹣30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切;(2)在Rt△AOC中,∠A=30°,AC=6,则tan30°===,∠COA=60°,解得:CO=2,∴弧BC的弧长为:=,设底面圆半径为:r,则2πr=,解得:r=.【点睛】本题考查了等腰三角形的性质、圆锥的计算和切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.24、(1)猜想:AC与⊙O相切;(2)四边形BOCD为菱形;(3)【解析】(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)连结OD,由CD∥AB得到∠AOC=∠OCD,根据三角形外角性质得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判断△OCD为等边三角形,则CD=OB=OC,先可判断四边形OBDC为平行四边形,加上OB=OC,于是可判断四边形BOCD为菱形;(3)在Rt△AOC中,根据含30度的直角三角形三边的关系得到OC=,再根据弧长公式计算出弧BC的弧长=然后根据圆锥的计算求圆锥的底面圆半径.【详解】(1)AC与⊙O相切,∠ACB=120°,∴∠ABC=∠A=30°.,∠CBO=∠BCO=30°,∴∠OCA=120°-30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切.(2)四边形BOCD是菱形连接OD.∵CD∥AB,∴∠OCD=∠AOC=2×30°=60°,∴△COD是等边三角形,,∴四边形BOCD是平行四边形,∴四边形BOCD是菱形.,(3)在Rt△AOC中,∠A=30°,AC=6,ACtan∠A=6tan30°=,∴弧BC的弧长∴底面圆半径【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.25、51【解析】由三角函数求出,得出,在中,由三角函数得出,即可得出答案.【详解】解:,,,,,,,在中,,,,答:炎帝塑像DE的高度约为51m.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度适中.26、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.【解析】(1)将抛物线解析式整理成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论