浙江省杭州市四校2022-2023学年数学九年级上册期末统考模拟试题含解析_第1页
浙江省杭州市四校2022-2023学年数学九年级上册期末统考模拟试题含解析_第2页
浙江省杭州市四校2022-2023学年数学九年级上册期末统考模拟试题含解析_第3页
浙江省杭州市四校2022-2023学年数学九年级上册期末统考模拟试题含解析_第4页
浙江省杭州市四校2022-2023学年数学九年级上册期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个2.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+23.当取下列何值时,关于的一元二次方程有两个相等的实数根()A.1. B.2 C.4. D.4.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.5.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.6.下列运算正确的是()A. B. C. D.7.一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种8.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.9.两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2 B.1:4 C.1:8 D.1:1610.已知(,),下列变形错误的是()A. B. C. D.11.如图,在平面直角坐标系内,正方形OABC的顶点A,B在第一象限内,且点A,B在反比例函数y=(k≠0)的图象上,点C在第四象限内.其中,点A的纵坐标为2,则k的值为()A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣412.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°二、填空题(每题4分,共24分)13.如果四条线段m,n,x,y成比例,若m=2,n=8,y=20,则线段x的长为________.14.已知关于x的一元二次方程的常数项为零,则k的值为_____.15.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为_____cm.16.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.17.分解因式:3a2b+6ab2=____.18.连掷两次骰子,它们的点数都是4的概率是__________.三、解答题(共78分)19.(8分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.20.(8分)某商场为了方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式扶梯AB长为10m,坡角∠ABD=30°;改造后斜坡式自动扶梯的坡角∠ACB=9°,请计算改造后的斜坡AC的长度,(结果精确到0.01(sin9°≈0.156,cos9°≈0.988,tan9°≈0.158)21.(8分)在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.(1)画树状图或列表,写出点P所有可能的坐标;(2)求出点P在以原点为圆心,5为半径的圆上的概率.22.(10分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.23.(10分)速滑运动受到许多年轻人的喜爱。如图,四边形是某速滑场馆建造的滑台,已知,滑台的高为米,且坡面的坡度为.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为.(1)求新坡面的坡角及的长;(2)原坡面底部的正前方米处是护墙,为保证安全,体育管理部门规定,坡面底部至少距护墙米。请问新的设计方案能否通过,试说明理由(参考数据:)24.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.(12分)“每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.(1)请用树状图或列表法求出所有可能的结果;(2)请问这个游戏规则公平吗?并说明理由.26.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.2、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.3、A【分析】根据一元二次方程的判别式判断即可.【详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【点睛】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.4、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.5、D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用6、D【分析】按照有理数、乘方、幂、二次根式的运算规律进行解答即可.【详解】解:A.,故A选项错误;B.,故B选项错误;C.,故C选项错误;D.,故D选项正确;故答案为D.【点睛】本题考查了有理数、乘方、幂、二次根式的运算法则,掌握响应的运算法则是解答本题的关键.7、B【解析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【详解】∵两根铝材的长分别为27cm、45cm,若45cm为一边时,则另两边的和为27cm,27<45,不能构成三角形,∴必须以27cm为一边,45cm的铝材为另外两边,设另外两边长分别为x、y,则(1)若27cm与24cm相对应时,,解得:x=33.75cm,y=40.5cm,x+y=33.75+40.5=74.25cm>45cm,故不成立;(2)若27cm与36cm相对应时,,解得:x=22.5cm,y=18cm,x+y=22.5+18=40.5cm<45cm,成立;(3)若27cm与30cm相对应时,,解得:x=32.4cm,y=21.6cm,x+y=32.4+21.6=54cm>45cm,故不成立;故只有一种截法.故选B.8、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【详解】解:∵矩形的长为6,宽为3,

∴AB=CD=6,AD=BC=3,

∴弧BD的长=18-12=6,故选:B.【点睛】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式9、A【解析】分析:根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比可得.解:∵两个相似多边形面积比为1:4,∴周长之比为=1:1.故选B.点睛:相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.10、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.11、B【分析】作AE⊥x轴于E,BF∥x轴,交AE于F,根据图象上点的坐标特征得出A(,2),证得△AOE≌△BAF(AAS),得出OE=AF,AE=BF,即可得到B(+2,2-),根据系数k的几何意义得到k=(+2)(2-),解得即可.【详解】解:作AE⊥x轴于E,BF//x轴,交AE于F,∵∠OAE+∠BAF=90°=∠OAE+∠AOE,∴∠BAF=∠AOE,在△AOE和△BAF中∴△AOE≌△BAF(AAS),∴OE=AF,AE=BF,∵点A,B在反比例函数y=(k≠0)的图象上,点A的纵坐标为2,∴A(,2),∴B(+2,2﹣),∴k=(+2)(2﹣),解得k=﹣2±2(负数舍去),∴k=2﹣2,故选:B.【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.12、D【解析】试题分析:∵OA=OC,∴∠A=∠ACO=30°,∵AB是⊙O的直径,∴∠BOC=2∠A=2×30°=60°.故选D.考点:圆周角定理.二、填空题(每题4分,共24分)13、1【详解】解:根据题意可知m:n=x:y,即2:8=x:20,解得:x=1.故答案为:114、1【分析】由一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,即可得,继而求得答案.【详解】解:∵一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,∴,由①得:(k﹣1)(k﹣1)=0,解得:k=1或k=1,由②得:k≠1,∴k的值为1,故答案为:1.【点睛】本题是对一元二次方程根的考查,熟练掌握一元二次方程知识是解决本题的关键.15、1【解析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×1π×r×8=16π,解得r=1,然后解关于r的方程即可.【详解】解:设圆锥的底面圆的半径为r,根据题意得×1π×r×8=16π,解得r=1,所以圆锥的底面圆的半径为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16、2.【分析】把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.17、3ab(a+2b)【分析】观察可得此题的公因式为:3ab,提取公因式即可求得答案.【详解】解:3a2b+6ab2=3ab(a+2b)故答案为:3ab(a+2b)18、【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况,∴它们的点数都是4的概率是:,故答案为:.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,

(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:

k=-1×1=-4,

即反比例函数的解析式为,解得:

m=4,n=-1,

即点A(-1,4),点C(4,-1),

把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,

(1)把x=0代入y=-x+3得:y=3,

即点D(0,3),

点A到y轴的距离为1,点C到y轴的距离为4,

S△PAD=×PD×1=PD,

S△PCD=×PD×4=1PD,

S△PAC=S△PAD+S△PCD=PD=5,

PD=1,

∵点D(0,3),

∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.20、32.05米【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【详解】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=9°,sin9°=,∴AC==≈32.05(m),答:改造后的斜坡AC的长度为32.05米.【点睛】此题主要考查了解直角三角形的应用,熟练利用锐角三角函数关系得出是解题关键.21、(1)列表见解析,P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)【分析】(1)用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:因此点P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),∴点P在以原点为圆心,5为半径的圆上的概率为.【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.22、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=9,然后解方程得到满足条件的k的值.【详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【点睛】本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.23、(1)新坡面的坡角为,米;(2)新的设计方案不能通过,理由详见解析.【分析】(1)过点C作CH⊥BG,根据坡度的概念、正确的定义求出新坡面AC的坡角;(2)根据坡度的定义分别求出AH、BH,求出EA,根据题意进行比较,得到答案.【详解】解:如图,过点作垂足为(1)新坡面的坡度为,即新坡面的坡角为米;(2)新的设计方案不能通过.理由如下:坡面的坡度为,,新的设计方案不能通过.【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.24、(1)证明见解析;(2)DE与⊙O相切;(3)【分析】(1)连接AD,根据等腰三角形三线合一性质得到AD⊥BC,再根据90°的圆周角所对的弦为直径即可证得AB是⊙O的直径;(2)DE与圆O相切,理由为:连接OD,利用中位线定理得到OD∥AC,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且∠BAC=60°,得到DABC为等边三角形,连接BF,DE为DCBF中位线,求出BF的长,即可确定出DE的长.【详解】解:(1)证明:连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论