版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b2.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.3.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里5.设复数满足,在复平面内对应的点为,则()A. B. C. D.6.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.7.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.8.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.9.已知函数,下列结论不正确的是()A.的图像关于点中心对称 B.既是奇函数,又是周期函数C.的图像关于直线对称 D.的最大值是10.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有()A.69人 B.84人 C.108人 D.115人11.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.12.若2m>2n>1,则()A. B.πm﹣n>1C.ln(m﹣n)>0 D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.14.若,则的最小值为________.15.已知,,,,则______.16.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.18.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).19.(12分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.20.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.21.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.22.(10分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【题目详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【答案点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.2.A【答案解析】
依题意可得即可得到,从而求出双曲线的离心率的取值范围;【题目详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【答案点睛】本题考查双曲线的简单几何性质,属于中档题.3.B【答案解析】
首先由三视图还原几何体,进一步求出几何体的棱长.【题目详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【答案点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.4.B【答案解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【题目详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【答案点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.5.B【答案解析】
设,根据复数的几何意义得到、的关系式,即可得解;【题目详解】解:设∵,∴,解得.故选:B【答案点睛】本题考查复数的几何意义的应用,属于基础题.6.B【答案解析】
依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【题目详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【答案点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题7.B【答案解析】
根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【题目详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【答案点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.8.B【答案解析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.9.D【答案解析】
通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.【题目详解】解:,正确;,为奇函数,周期函数,正确;,正确;D:,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;且,,,故D错误.故选:.【答案点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.10.D【答案解析】
先求得名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得名学生中对四大发明只能说出一种或一种也说不出的人数.【题目详解】在这100名学生中,只能说出一种或一种也说不出的有人,设对四大发明只能说出一种或一种也说不出的有人,则,解得人.故选:D【答案点睛】本小题主要考查利用样本估计总体,属于基础题.11.C【答案解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【题目详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【答案点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.12.B【答案解析】
根据指数函数的单调性,结合特殊值进行辨析.【题目详解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B.【答案点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【题目详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.【答案点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.14.【答案解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【题目详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【答案点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。15.【答案解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【题目详解】,,,,,,,,.故答案为:【答案点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.16.【答案解析】
作出图像,设点,根据已知可得,,且,可解出,计算即得.【题目详解】如图,设,圆心坐标为,可得,,,,,解得,,即的长是.故答案为:【答案点睛】本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【答案解析】
(1)利用降次公式、辅助角公式化简解析式,根据三角函数单调区间的求法,求得的单调递增区间.(2)先由求得,利用正弦定理得到,结合余弦定理列方程,求得,由此求得三角形的面积.【题目详解】(1)函数,,由,得.所以的单调递增区间为.(2)因为且为锐角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【答案点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.18.(1)证明见解析(2)证明见解析【答案解析】
(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【题目详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,,,(以上三式当且仅当时同时取“=”)由(1)知,,所以,将以上三式相加得即.【答案点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.19.(1)1;(2)见解析【答案解析】
(1)设,,联立直线和抛物线方程,得,写出韦达定理,根据弦长公式,即可求出;(2)由,得,根据导数的几何意义,求出抛物线在点点处切线方程,进而求出,即可证出轴.【题目详解】解:(1)设,,将直线代入中整理得:,∴,,∴,解得:.(2)同(1)假设,,由,得,从而抛物线在点点处的切线方程为,即,令,得,由(1)知,从而,这表明轴.【答案点睛】本题考查直线与抛物线的位置关系,涉及联立方程组、韦达定理、弦长公式以及利用导数求切线方程,考查转化思想和计算能力.20.(1);(2)分布列见解析,期望为.【答案解析】
(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望.【题目详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,∴;(2)的所有可能值分别为,,,,,∴的分布列为:0123【答案点睛】本题考查古典概型,考查随机变量的概率分布列和数学期望.解题关键是掌握相互独立事件同时发生的概率计算公式.21.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淀粉产品在汽车工业行业的应用研究考核试卷
- 油炸食品的食品包装与市场销售考核试卷
- 水资源保护与可持续利用解决全球水危机考核试卷
- 电子靶技术在海水淡化处理中的应用考核试卷
- DB11T 889.4-2013 文物建筑修缮工程操作规程 第4部分:彩画作
- 瓦当陶艺课件教学课件
- 暖流课件图片教学课件
- s字母课件教学课件
- 自媒体写作技巧培训
- 淮阴工学院《精密机械基础》2021-2022学年第一学期期末试卷
- 小学六年级数学上册口算题300道(全)
- 《干粉灭火器检查卡》
- 校园监控值班记录表(共2页)
- 试桩施工方案 (完整版)
- 走中国工业化道路的思想及成就
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- Prolog语言(耐心看完-你就入门了)
- 保霸线外加电流深井阳极地床阴极保护工程施工方案
- 蓝色商务大气感恩同行集团公司20周年庆典PPT模板
- 恒温箱PLC控制系统毕业设计
评论
0/150
提交评论