版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为().A. B. C. D.2.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.103.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-24.如图,已知,直线与直线相交于点,下列结论错误的是()A. B.C. D.5.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°6.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线7.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°8.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.49.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.610.正六边形的周长为6,则它的面积为()A. B. C. D.11.老师出示了如图所示的小黑板上的题后,小华说:过点;小明说:;小颖说:轴被抛物线截得的线段长为2,三人的说法中,正确的有()A.1个 B.2个 C.3个 D.0个12.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.二次函数,当时,的最大值和最小值的和是_______.14.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线;③顶点坐标为;④时,图像从左至右呈下降趋势.其中正确的结论是_______________(只填序号).15.已知:,则的值是_______.16.已知圆的半径是,则该圆的内接正六边形的面积是__________17.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.18.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.三、解答题(共78分)19.(8分)如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.20.(8分)如图,抛物线的图象经过点,顶点的纵坐标为,与轴交于两点.(1)求抛物线的解析式.(2)连接为线段上一点,当时,求点的坐标.21.(8分)如图,双曲线上的一点,其中,过点作轴于点,连接.(1)已知的面积是,求的值;(2)将绕点逆时针旋转得到,且点的对应点恰好落在该双曲线上,求的值.22.(10分)先化简,再求值:,其中x=1.23.(10分)如图,是等边三角形,顺时针方向旋转后能与重合.(1)旋转中心是___________,旋转角度是___________度,(2)连接,证明:为等边三角形.24.(10分)在平面直角坐标系中,直线与双曲线交于点A(2,a).(1)求与的值;(2)画出双曲线的示意图;(3)设点是双曲线上一点(与不重合),直线与轴交于点,当时,结合图象,直接写出的值.25.(12分)“十一”黄金周期间,我市享有“江南八达岭”美誉的江南长城旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格60元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)若某单位组织23名员工去江南长城旅游区旅游,购买门票共需费用多少元?(2)若某单位共支付江南长城旅游区门票费用共计1232元,试求该单位这次共有多少名员工去江南长城旅游区旅游?26.某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得711元的利润,请你帮忙确定售价.
参考答案一、选择题(每题4分,共48分)1、C【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【详解】∵Rt△OAB的顶点A(−2,4)在抛物线上,∴4=4a,解得a=1,∴抛物线为,∵点A(−2,4),∴B(−2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入,得,解得∴P故答案为:.【点睛】考查二次函数图象上点的坐标特征,坐标与图形变化-旋转,掌握旋转的性质是解题的关键.2、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.3、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.4、B【分析】根据平行线分线段成比例的性质逐一分析即可得出结果.【详解】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD,则,所以B选项的结论错误;C、由CD∥EF,则,所以C选项的结论正确;D、由AB∥EF,则,所以D选项的结论正确.故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.5、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.6、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.7、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.8、C【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故选C考点:相似三角形的判定与性质.9、D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.10、B【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴该六边形的面积为:.故选:B.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.11、B【分析】根据图上给出的条件是与x轴交于(1,0),叫我们加个条件使对称轴是,意思就是抛物线的对称轴是是题目的已知条件,这样可以求出的值,然后即可判断题目给出三人的判断是否正确.【详解】∵抛物线过(1,0),对称轴是,∴解得,
∴抛物线的解析式为,
当时,,所以小华正确;∵,所以小明正确;
抛物线被轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y轴或,此时答案不唯一,所以小颖错误.综上,小华、小明正确,
故选:B.【点睛】本题考查了抛物线与轴的交点以及待定系数法求二次函数解析式,利用待定系数法求出抛物线的解析式是解题的关键.12、C【解析】试题分析:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选C.考点:几何概率.二、填空题(每题4分,共24分)13、【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x=1,则当x=1时,y=1−2−3=−1,是最小值;当x=3时,y=9−6−3=0是最大值.的最大值和最小值的和是-1故答案为:-1.【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.14、①③④【分析】根据二次函数的性质对各小题分析判断即可得解.【详解】解:在抛物线中,∵,∴抛物线的开口向下;①正确;∴对称轴为直线;②错误;∴顶点坐标为;③正确;∴时,图像从左至右呈下降趋势;④正确;∴正确的结论有:①③④;故答案为:①③④.【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.15、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.16、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.17、或【解析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数=(>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:或,故答案为或【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.18、1【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.三、解答题(共78分)19、(1)反比例函数的解析式为:y=;一次函数的解析式为:y=x﹣2;(2)S△AOB=;(2)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.【分析】(1)把A的坐标代入y=,求出反比例函数的解析式,把A的坐标代入y=x+b求出一次函数的解析式;(2)求出D、B的坐标,利用S△AOB=S△AOD+S△BOD计算,即可求出答案;(2)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)∵反比例函数y=的图象过点A(1,1),∴1=,即k=1,∴反比例函数的解析式为:y=.∵一次函数y=x+b(k≠0)的图象过点A(1,1),∴1=1+b,解得b=﹣2,∴一次函数的解析式为:y=x﹣2;(2)∵令x=0,则y=﹣2,∴D(0,﹣2),即DO=2.解方程=x﹣2,得x=﹣1,∴B(﹣1,﹣1),∴S△AOB=S△AOD+S△BOD=×2×1+×2×1=;(2)∵A(1,1),B(﹣1,﹣1),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.20、(1)或;(2)【分析】(1)将点C、D的坐标代入抛物线表达式,即可求解;(2)当△AOC∽△AEB时,===,求出yE=,即可求出点E坐标.【详解】解:(1)由题可列方程组:,解得:,∴抛物线解析式为:或;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得,∴直线AC的解析式为:y=-2x-2,
当△AOC∽△AEB时,===,∵S△AOC=1,∴S△AEB=,∴AB×|yE|=,AB=4,则yE=,则点E(,).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、三角形相似、图形的面积计算等.21、(1)6;(2)【分析】(1)根据点A坐标及三角形面积公式求得的值,从而求得的值;(2)延长交轴于点,根据旋转的性质可得,,然后判定四边形为矩形,用含m,n的式子表示出点C的坐标,将点A,C代入反比例解析式中,得到关于m的方程,解方程,从而求解.【详解】解:(1)∵,轴于点,∴,.又,∴.∵点在双曲线上,∴.(2)延长交轴于点.∵绕点逆时针旋转得到,∴,,∴,,.∵轴于点,∴,∴四边形为矩形,∴,∴轴,∴,∴,,∴.∵点都在双曲线上,∴,化简得.解法一:解关于的方程,得.∵,∴,∴.解法二:方程两边同时除以,得,解得.∵,∴.【点睛】本题考查反比例函数的应用,比例系数k的几何意义,旋转的性质,及一元二次方程的解法,综合性较强,利用数形结合思想解题是本题的解题关键.22、,.【分析】直接将括号里面通分运算,进而利用分式的性质化简得出答案.【详解】解:原式===,当x=1时,原式=.【点睛】本题考查的是分式的化简求值,比较简单,记住先化简再求值.23、(1)B,60;(2)见解析【分析】(1)根据三角形三个顶点中没有变动的点就是旋转中心来判断,再根据旋转的性质判断出旋转的角度即可;(2)先根据旋转的性质得出和即可证明.【详解】解:(1)旋转中心是,旋转角度是度;(2)证明:是等边三角形,,旋转角是;,又,是等边三角形.【点睛】本题主要考察正三角形的判定及性质、图形的旋转性质,熟练掌握性质是关键.24、(1),;(2)示意图见解析;(3)6,.【分析】(1)把点A(2,a)代入直线解析式求出a,再把A(2,a)代入双曲线求出k即可;(2)先列表,再描点,然后连线即可;(3)利用数形结思想观察图形即可得到答案.【详解】(1)∵直线过点,∴.又∵双曲线()过点A(2,2),∴.(2)列表如下:x…-4-2-1124…y…-1-2-4421…描点,连线如下:(3)6,.①当点P在第一象限时,如图,过点A作AC⊥y轴于点C,过点P作PD⊥y轴于点D,则△BDP∽△BCA,∴=∵点A(2,2),∴AC=2,OC=2.∴PD=1.即m=1,当m=1时,n=.即OD=4,∴CD=OD-OC=2.∴BD=CD=2.∴OB=BD+OD=6即b=6.②当点p在第三象限时,如图,过点A作AC⊥y轴于点C,过点P作PD⊥y轴于点D,则△BDP∽△BCA,∴=∵点A(2,2),∴AC=2,OC=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿项目式学习与探究能力考核试卷
- 时尚市场的市场细分与定位考核试卷
- 广告创作与互动媒体考核试卷
- 活动临时附加合同范例
- 政府工程欠款合同范例
- 熊猫居间协议合同模板
- 亲子服务合同模板
- 灯箱制作安装合同模板
- 抖音项目合同范例
- 改造光纤工程合同模板
- 变电检修工-高级工练习题含参考答案
- 回迁房买卖合同版
- 部编版语文七年级上册 第六单元整本书阅读 《西游记》练习(含答案)
- 2024年四川省安全员B证考试试题题库
- 化工安全 教案 第二章 化工安全基础
- 2023-2024学年广东省深圳市福田区七年级(上)期中英语试卷
- 签署劳动合同培训
- 急性胰腺炎护理查房-2
- 三年级下册综合实践活动课件-校园安全|教科版16张
- DB61-T+1806.3-2024网售产品质量监督抽查工作规范+第3部分:样品管理
- 2024年商场员工管理制度(四篇)
评论
0/150
提交评论