2021-2022学年安徽省合肥市肥东中学高三六校第一次联考数学试卷含解析_第1页
2021-2022学年安徽省合肥市肥东中学高三六校第一次联考数学试卷含解析_第2页
2021-2022学年安徽省合肥市肥东中学高三六校第一次联考数学试卷含解析_第3页
2021-2022学年安徽省合肥市肥东中学高三六校第一次联考数学试卷含解析_第4页
2021-2022学年安徽省合肥市肥东中学高三六校第一次联考数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题2.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.3.已知函数的一条切线为,则的最小值为()A. B. C. D.4.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为A. B.C. D.5.若直线与曲线相切,则()A.3 B. C.2 D.6.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4 B.8 C.9 D.277.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生8.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170 B.10 C.172 D.129.设函数的定义域为,命题:,的否定是()A., B.,C., D.,10.已知,,,则的最小值为()A. B. C. D.11.设,满足约束条件,则的最大值是()A. B. C. D.12.已知为虚数单位,若复数,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间内有且仅有两个零点,则实数的取值范围是_____.14.若,则=____,=___.15.设定义域为的函数满足,则不等式的解集为__________.16.如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数,(是自然对数的底数).(Ⅰ)讨论函数极值点的个数;(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.18.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.19.(12分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计A.B设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?20.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.21.(12分)已知,且满足,证明:.22.(10分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.2.C【解析】

利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.3.A【解析】

求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.4.C【解析】

由题可得,解得,则,,所以这部分男生的身高的中位数的估计值为,故选C.5.A【解析】

设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.6.D【解析】

设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,,,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,,在中,由勾股定理得:,,解得,,故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.7.C【解析】

根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.8.D【解析】

中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.9.D【解析】

根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.10.B【解析】,选B11.D【解析】

作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.12.B【解析】

因为,所以,故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14.12821【解析】

令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.15.【解析】

根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.16.(1);(2).【解析】

(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,,进而表示直线的方程,由直线与圆相切构建关系化简整理得,即可表示OA,OB,最后由三角形面积公式表示面积即可;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式换元,再令进行换元,并构建新的函数,由二次函数性质即可求得最小值.【详解】解:(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,.所以直线的方程为,即.因为直线与圆相切,所以.因为点在直线的上方,所以,所以式可化为,解得.所以,.所以面积为.(2)令,则,且,所以,.令,,所以在上单调递减.所以,当,即时,取得最大值,取最小值.答:当时,面积为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析:(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设,所以,设,则,且是增函数,所以。所以分和k>1讨论。试题解析:(Ⅰ)因为,所以,当时,对,,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设,所以,设,则,且是增函数,所以当时,,所以在上是增函数,,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为,,所以在上存在唯一零点,当时,,在上单调递减,从而,即,所以在上单调递减,所以当时,,即.所以不等式在区间内有解综上所述,实数的取值范围为.18.(1),(2)【解析】

(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.19.(1)30.2,29;(2)B设备【解析】

(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1)A设备生产的样本的频数分布表如下质量指标值频数41640121810.根据样本质量指标平均值估计A设备生产一件产品质量指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值频数2184814162根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.(2)A设备生产一件产品的利润记为X,B设备生产一件产品的利润记为Y,X240180120PY240180120P若以生产一件产品的利润作为决策依据,企业应加大B设备的生产规模.【点睛】本题考查平均数的估计值、离散随机变量的期望,并利用期望作决策,是一个概率与统计综合题,本题是一道中档题.20.(1)(2)(i)(ii)分布列见解析,【解析】

(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论