版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(Foundationof)
ModernControlTheory10.Introduction
0.1.What?-how?-why?Anexample(processcontrolshownbyblockdiagram)OutputY(controlledvariable)-process(controlledobject,plant)-actuator-poweramplifier(open-loopcontrol,Manual/automatic
)-disturbanceinput-controller-sensor(f1)-referenceinput(R)-Difference(R-f1)0.2.Typicallythinkofclosed-loopcontrol→sowewouldanalyzetheclosed-loopdynamics–Open-loopcontrolalsopossible(called“feedforward”)–morepronetomodelingerrorssinceinputsnotchangedasaresultofmeasurederror.Openloopcontrolsystem.AsysteminwhichtheoutputhasnoeffectupontheinputsignalClosed-loopcontrolsystem.Asysteminwhichtheoutputhasaneffectupontheinputquantityinsuchamannerastomaintainthedesiredoutputvalue.
0.3.Goal:
DesignacontrollerGc(s)sothatthesystemhassomedesiredcharacteristics.Typicalobjectives:-Stabilizethesystem(Stabilization)–Regulatethesystemaboutsomedesignpoint(Regulation)–Followagivenclassofcommandsignals(Tracking)-Reduceresponsetodisturbances.(DisturbanceRejection)0.4.Notethatatypicalcontrolsystemincludesthesensors,actuators,andthecontrollaw.–Thesensorsandactuatorsneednotalwaysbephysicaldevices(e.g.,economicsystems).–Agoodselectionofthesensorandactuatorcangreatlysimplifythecontroldesignprocess.–Courseconcentratesonthedesignofthecontrollawgiventherestofthesystem(althoughwewillneedtomodelthesystem).20.5.FeedbackControlApproach•0.5.1.Establishcontrolobjectives–Qualitative–don’tusetoomuchfuel–Quantitative–settlingtimeofstepresponse<3sec–Typicallyrequiresthatyouunderstandtheprocess(expectedcommandsanddisturbances)andtheoverallgoals(bandwidths).–Oftenrequiresthatyouhaveastrongunderstandingofthephysicaldynamicsofthesystemsothatyoudonot“fight”themininappropriate(i.e.,inefficient)ways.0.5.2.Selectsensors&actuators–Whataspectsofthesystemaretobesensedandcontrolled?–Considersensornoiseandlinearityaskeydiscriminators.–Cost,reliability,size,...0.5.3.Obtainmodel–Analyticorfrommeasureddata(systemID)–Evaluationmodel→reducesize/complexity→Designmodel–Accuracy?Errormodel?0.5.4.Designcontroller–Selecttechnique(SISO,MIMO),(classical,state-space)–Chooseparameters(optimization)•0.5.5.Analyzeclosed-loopperformance.Meetobjectives?–Analysis,simulation,experimentation,...–Yes⇒done,No⇒iterate...30.6.WhyUseControl?
0.6.1•Typicallyeasyquestiontoanswerforaerospacebecausemanyvehicles(spacecraft,aircraft,rockets)andaerospaceprocesses(propulsion)needtobecontrolledjusttofunction–Example:theF-117doesnotevenflywithoutcomputercontrol,andtheX-29isunstableOperationIraqifreedomAnF-117fromthe8thexpeditionaryFighterSquadronoutofHollomannAirForcebace,N.M.,fliesoverthePersianGolfonApril14,2003(U.S.AirforcephotobyStaffSgt.DerrickC.Goode)Fig1.1.F11740.6.2.Betterperformance•Buttherearealsomanystablesystemsthatsimplyrequirebetterperformanceinsomesense(e.g.,faster,lessoscillatory),andwecanusecontroltomodifythisbehavior.50.7.ApplicationoftheProportional-Integral-Derivative
(PID)Controller•Somefeaturesalreadypresent(inherently,i.e.built-in)insteamgovernors,butnotclearlyrecognized;•FirstpaperbyN.Minorsky(USNavy)in1922:“Directionalstabilityofautomaticallysteeredbodies”,J.Am.Soc.NavalEng.,34.•LandmarkpaperbyJ.G.Ziegler(TaylorInstruments)andN.B.Nichols(MIT)in1942:“Optimumsettingsforautomaticcontrollers”,Trans.ASME,64,759-768.•PIDcontrollersareusedinover90%ofindustrialcontrolloopsworldwide.•ControlsystemsengineeringeducationbyK.J.Aströmet.60.8.Conclusion•Controlofsystemsanddevicesisaveryoldhumanneedand,therefore,isanancientconcept;•Asadiscipline,ithadastartwiththeanalysisofthegovernor(late19thcentury);•IthadamajorboostwithWWII,ColdWarandthepaceRace;"Theartofinteractionindynamicnetworks."-RoyAscott70.9.CourseDescriptionThiscourseisintendedtointroducetheanalysisandsynthesismethodsoflinearsystemsbasedonstatespacedescriptions.Themaincontentsofthecourseareasfollows:statespacedescriptionofcontrolsystemsandthedifferenceandconnectionbetweenstatespacedescriptionandthetransferfunctiondescriptioninclassicalcontroltheory,definitionsandcriterionsofcontrollabilityandobservability,definitionsandcriterionsofLyapunovstability,methodsofconstantlinearsystemsynthesissuchaspoleassignment,stabilizationandobserverdesign.80.10.Myreasonsforthereviewofclassicaldesign:
–State-spacetechniquesarejustanotherwaytodesignacontroller,anditisessentialthatyouunderstandthebasicsofthecontroldesignprocess.Otherwisethesearejusta“bunchofnumericaltools”.–Totrulyunderstandtheoutputofthestate-spacecontroldesignprocess,Ithinkitisimportantthatyoubeabletoanalyzeitfromaclassicalperspective._Trytoanswer“whydiditdothat”?_Notalwayspossible,butalwaysagoodgoal.•Matlabwillberequiredextensively.Ifyouhavenotuseditbefore,thenstartpracticing.Data---information---understanding---knowledge---wisdom9
0.11.ControlTheoryHistory1769, JamesWatt’ssteamengineandgovernor-FlyingBall1875,1895,RouthandHurwittzdevelopedstabilityanalysiscriterion1932,Nyquistdevelopedamethodforsystemstabilityanalysis1948,NorbertWiener-《Cybernetics》1892,Lyapunovstability,interestinitstartedduringthe ColdWar(1953-1962)1960,Kalmancontrollabilityandobservability1960,ModerncontroltheorybasedonStatevariablemethodsClassicalControl-ModernControl10WATT’sFlyballGovernorFig1.2.WATT’sFlyballGovernor11CourserequirementPrerequisitesPrinciplesofAutomaticcontrolLinearAlgebraMatlabEvaluationAttendance (10%)Assignment (20%)Exam (70%)12作业1、什么是高性能的控制系统?什么因素影响控制系统性能?高性能控制系统的控制结构是什么?2、为了提高实际环节K/(Ts+1)的快速性,1、采用串联(Ts+1)/(0.01Ts+1),2、采用在前向通道加入一个Kc构成反馈环节,再在输入加入一个Kc1,求Kc、Kc1使这两种方法的传递函数完全一样,问这两种方法的区别是什么?13Systemp=q=1:SISOOtherwise:MIMO0.12.1.Input-outputdescriptionofsystems0.12.Introduction140.12.2.Relaxedproperty
(y(t0)=f(t0)
→
memorylesssystemseg:onlyresistors)(y(t1)=f(t,u(t)),-∞<t<t1)→
memorysystems)H:u→y;y=Hu (1-1)(Hisanoperatororfunctionwhichcanbedecidedbysystemproperties)Eg:Forasystemrelaxedattimet0,itexistsY[t0,∞)=Hu[t0,∞)150.12.3.CausalProperty
Asystemiscalledacausalsystemifitscurrentoutputattimetdependsonlyontheinputbeforetratherthanthefutureinputaftertimet.
Foracausalrelaxedsystem:y(t)=Hu(-∞,t),∀t>-∞0.12.4.LinearityDefinition1-1:Supposethatasystemisrelaxedatt=t0
α1,α2arearbitraryrealconstantandu1(t),u2(t)aretwoarbitraryinputs(t≥t0),ify=H(α1u1+α2u2)=α1Hu1+α2Hu2=α1y1+α2y2 (1-3)hold,
Thenthesystemsatisfieswithlinearty,oritiscalledalinearsystem.(Arelaxedsystemiscalledalinearsystemifithasthesuperpositionproperty)y=H(α1u1)=α1Hu1homogeneity,y=H(u1+u2)=Hu1+Hu2=y1+y2additivityy(t)=u2(t)/u(t-1),u(t-1)≠0=0,u(t-1)=0,homogeneity,×additivity160.12.5.Time-invariantpropertyTime-invariantpropertyofasystemmeansthatthedynamicalcharacteristicofinput-outputdoesnotchangewithtime.TheeffectofshiftingoperatorQaisshowninfollowingFig.Definition1-2Arelaxedsystemiscalledatime-invariantsystemifandonlyifforanyinputuandanyrealnumberα,thefollowingequationhold.Otherwiseitistime-variant171StateSpaceDescriptionofDynamicsystems1.1.StateVariableandStateSpaceExpression1.2.StateVariableExpression
fromdifferentialoperatorrepresentation1.3.Transferfunctionmatrix1.4.Mathematicalmodelofadiscrete-timesystem1.5.Equivalentstateequations
1.6.Thestate-spacerepresentationofcompositesystem1.7.ModeltypeconversionsbasedonMATLAB181.1.StateVariableandStateSpaceExpressionEg.2-1Fig1.3.RLCcurcirtInitialvalues:19L作业:1、Couldweassume:x1=uc(t),x2=i(t),orx1=3x1,x2=x1+x2,…列写新的状态方程。2、一个机械系统具有弹性系数K的弹簧,串联质量为M质量块,并在上连接系数为f阻尼器,在质量块上输入外力F(t),质量块的运动位移为y(t),按上述方式建立系统的数学模型,并与上述电气系统对比,是否适当选取参数使这两个系统动态性能完全一样?20Assume,theresistanceRandcapacitorCarebothnonlinear(R=R0*i(t),C=2*C0*uc)ForNLTI211.1.1StateandStateSpaceDefinitionofstate:Thestateofadynamicsystemisamathematicalstructurecontainingasetofnvariablesx1(t),x2(t),…xn(t),calledstate,suchthattheinitialvaluesxi(t0),i=1,…n,ofthissetattimet0andthesysteminputsuj(t),j=1,2,…,p,t≥t0,aresufficienttodetermineuniquelythesystem’sfuturebehaviorofoft≥t0.Aminimumsetofstatevariablesisrequiredtorepresentthesystemcompletely.Definitionofstatevector:ThestatevectorofadynamicsystemisdefinedasthecolumnvectorX(t);thatis22StatespaceandstatetrajectoryDefinitionofstatespace:Statespaceisdefinedasthen-dimensionalspaceinwhichthecomponentsofthestatevectorrepresentitscoordinateaxesDefinitionofstatetrajectory:StatetrajectoryisdefinedasthepathproducedinstatespacebythestatevectorX(t)asitchangeswiththepassageoftime.Eg.2-dimensional,thephaseplane-SS,phasetrajectory-ST23Stateequationandoutputequationtogetherarecalledstatespaceexpression
1.1.2.Stateequation:îíìÛFirst-order
differenceequation
First-orderDifferentialEquation
uxOutputequation:yxuìÛîAlgebraicequation
Stateequation24Lineartimevaringsystem
time-invariantdiscretelinearsystem
A–StateMatrixB–InputMatrixC–OutputMatrixD–DirecttransmissionMatrixf,g-linearfunction
LinearsystemLineartime-invariantsystemT-samplingperiod25ClassicalcontroltheoryVSModerncontroltheory
SISO,linear,time-invariantsystemLaplacetransformTime,complexnumberFrequencydomainoutputMIMO,Nonlinear,time-varingsystemMatrix,vector,linearalgebraTimedomainstate26•Mostgeneralcontinuous-timelineardynamicalsystemhasformY(t)=C(t)x(t)+D(t)u(t)
where:–t∈Rdenotestime, –x(t)∈Rnisthestate(vector)–u(t)∈Rmistheinputorcontrol, –y(t)∈Rpistheoutput–A(t)∈Rn×nisthedynamicsmatrix, –B(t)∈Rn×mistheinputmatrix–C(t)∈Rp×nistheoutputorsensormatrix–D(t)∈Rp×misthefeedthro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论