2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷_第1页
2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷_第2页
2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷_第3页
2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷_第4页
2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.)1.(3分)(2019秋•南山区期末)若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cm2.(3分)(烟台)如图所示的工件,其俯视图是()A. B. C. D.3.(3分)(2019秋•南山区期末)如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的()A. B. C. D.4.(3分)(2011•枣庄)已知反比例函数,下列结论中不正确的是()A.图象经过点(﹣1,﹣1) B.图象在第一、三象限 C.当x>1时,0<y<1 D.当x<0时,y随着x的增大而增大5.(3分)(2019秋•南山区期末)如果1是方程2x2+bx﹣4=0的一个根,则方程的另一个根是()A.﹣2 B.2 C.﹣1 D.16.(3分)(2019秋•南山区期末)下列命题中,不正确的是()A.对角线相等的矩形是正方形 B.对角线垂直平分的四边形是菱形 C.矩形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形7.(3分)(2019秋•南山区期末)某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀” B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数 C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球 D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃8.(3分)(2019秋•南山区期末)如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4 B.1:4:16 C.1:3:12 D.1:3:79.(3分)(2019秋•南山区期末)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.8010.(3分)(2019秋•南山区期末)已知关于x的一元二次方程(k﹣2)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k<3 C.k<2且k≠0 D.k<3且k≠211.(3分)(2019秋•南山区期末)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4) B.(6,2) C.(4,4) D.(8,4)12.(3分)(2019秋•南山区期末)在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG(2)∠EAG=45°(3)S△EFC(4)CFGEA.1 B.2 C.3 D.4二、填空题(每题3分,共12分)13.(3分)(2009•綦江县)一元二次方程x2﹣16=0的解是.14.(3分)(2019秋•南山区期末)已知,则.15.(3分)(2019秋•南山区期末)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF,若菱形ABCD的边长为2cm,∠B=60°,那么EF=cm.16.(3分)(2019秋•南山区期末)如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y(x<0)上,D点在双曲线y(x>0)上,则k的值为.三、解答题(共52分)17.(6分)(2019秋•南山区期末)解下列方程:(1)x2+4x﹣5=0(2)(x﹣3)2=2(3﹣x)18.(6分)(2019秋•南山区期末)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.19.(7分)(2019秋•南山区期末)如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.20.(8分)(长清区一模)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y(x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)将这个菱形沿x轴正方向平移,当顶点D落在反比例函数图象上时,求菱形平移的距离.21.(8分)(2019秋•南山区期末)深圳著名“网红打卡地”东部华侨城在2018年春节长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客奖达28.8万人次.一家特色小面店希望在五一长期限期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护深圳城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?22.(8分)(2019秋•南山区期末)在△ABC中,∠ACB=90°,AB=20,BC=12.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,则HQ=.(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.23.(9分)(2019秋•南山区期末)如图1,已知点A(a,0),B(0,b),且a、b满足(a+b+3)2=0,平行四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y经过C、D两点.(1)a=,b=;(2)求D点的坐标;(3)点P在双曲线y上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.

2019-2020学年广东省深圳市南山区九年级(上)期末数学试卷答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.)1.(3分)(2019秋•南山区期末)若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cmC【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.解:已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【点评】本题考查线段成比例的问题.根据线段成比例的性质求解即可.2.(3分)(烟台)如图所示的工件,其俯视图是()A. B. C. D.B【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2019秋•南山区期末)如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的()A. B. C. D.B【分析】根据两直线平行,内错角相等可得∠ABO=∠CDO,然后利用“角边角”证明△BOE和△DOF全等,根据全等三角形的性质可得S△BOE=S△DOF,从而得到阴影部分的面积=S△AOB,再根据矩形的性质解答.解:∵矩形ABCD的边AB∥CD,∴∠ABO=∠CDO,在矩形ABCD中,OB=OD,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴阴影部分的面积=S△AOBS矩形ABCD.故选:B.【点评】本题考查了矩形的性质,全等三角形的判定与性质,熟记性质并求出阴影部分的面积=S△AOB是解题的关键.4.(3分)(2011•枣庄)已知反比例函数,下列结论中不正确的是()A.图象经过点(﹣1,﹣1) B.图象在第一、三象限 C.当x>1时,0<y<1 D.当x<0时,y随着x的增大而增大D【分析】根据反比例函数的性质,利用排除法求解.解:A、x=﹣1,y1,∴图象经过点(﹣1,﹣1),正确;B、∵k=1>0,∴图象在第一、三象限,正确;C、∵k=1>0,∴图象在第一象限内y随x的增大而减小,∴当x>1时,0<y<1,正确;D、应为当x<0时,y随着x的增大而减小,错误.故选:D.【点评】本题主要考查反比例函数的性质,当k>0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小.5.(3分)(2019秋•南山区期末)如果1是方程2x2+bx﹣4=0的一个根,则方程的另一个根是()A.﹣2 B.2 C.﹣1 D.1A【分析】利用两根之积为﹣2确定方程的另一个根.解:设方程的另一个根为t,根据题意得1×t,解得t=﹣2,即方程的另一个根为﹣2.故选:A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.6.(3分)(2019秋•南山区期末)下列命题中,不正确的是()A.对角线相等的矩形是正方形 B.对角线垂直平分的四边形是菱形 C.矩形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形A【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连结菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.【点评】本题考查了命题与定理:写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.(3分)(2019秋•南山区期末)某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀” B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数 C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球 D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃B【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.8.(3分)(2019秋•南山区期末)如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4 B.1:4:16 C.1:3:12 D.1:3:7C【分析】由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根据AD:AF:AB=1:2:4,可求出三个相似三角形的面积比.进而可求出△ADE、四边形DFGE、四边形FBCG的面积比.解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD:AF:AB=1:2:4,∴S△ADE:S△AFG:S△ABC=1:4:16,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,16a,则S四边形DFGE和S四边形FBCG分别是3a,12a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:12.故选:C.【点评】本题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.求出三个相似三角形的相似比是解决本题的关键.9.(3分)(2019秋•南山区期末)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.80B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.解:过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC﹣x),则240:150=160:(160﹣x),解得:x=60.答:投射在墙上的影子DE长度为60cm.故选:B.【点评】本题考查了相似三角形的应用,解题的关键是正确地构造直角三角形.10.(3分)(2019秋•南山区期末)已知关于x的一元二次方程(k﹣2)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k<3 C.k<2且k≠0 D.k<3且k≠2D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.解:∵关于x的一元二次方程(k﹣2)x2﹣2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选:D.【点评】本题考查了根的判别式,根据根的判别式△>0结合二次项系数非0得出关于k的一元一次不等式组是解题的关键.11.(3分)(2019秋•南山区期末)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4) B.(6,2) C.(4,4) D.(8,4)A【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴,∴,解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选:A.【点评】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.12.(3分)(2019秋•南山区期末)在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG(2)∠EAG=45°(3)S△EFC(4)CFGEA.1 B.2 C.3 D.4C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC;(4)根据(1)求得的x的长与EF不相等,进而可以判断CFGE.解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL)∴BG=FG设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4解得x,则3﹣x∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL)∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°.所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴即1:(1)=FH:()∴FH∴S△EFC2所以(3)正确;(4)∵GF,EF=1,点F不是EG的中点,CFGE,.所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点评】本题考查了翻折变换、全等三角形的判定与性质、正方形的性质,解决本题的关键是综合运用勾股定理及上述知识.二、填空题(每题3分,共12分)13.(3分)(2009•綦江县)一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.见试题解答内容【分析】方程变形后,开方即可求出解.解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故x1=﹣4,x2=4【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根的定义是解本题的关键.14.(3分)(2019秋•南山区期末)已知,则.见试题解答内容【分析】依据比例的性质,即可得到.解:∵,∴7a﹣7b=3a+3b,∴4a=10b,∴,故.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.15.(3分)(2019秋•南山区期末)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF,若菱形ABCD的边长为2cm,∠B=60°,那么EF=cm.见试题解答内容【分析】连接AC、BD,根据题意得出E、F分别为AB、AD的中点,EF是△ABD的中位线,得出EFBD,再由已知条件根据三角函数求出OB,即可求出EF.解:连接AC、BD,如图所示:根据题意得:E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EFBD,∵菱形ABCD的边长为2cm,∠ABC=60°,∴AB=2,OBBD,∠ABO=30°,∴OB=AB•cos30°=2,∴EFBD=OB;故.【点评】本题考查了菱形的性质、三角函数以及翻折变换;根据题意得出EF为△ABD的中位线和运用三角函数求出OB是解决问题的关键.16.(3分)(2019秋•南山区期末)如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y(x<0)上,D点在双曲线y(x>0)上,则k的值为6.见试题解答内容【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.解:∵A(﹣1,a)在双曲线y(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB,∵四边形ABCD是正方形,∴BC=AB,设C(n,0),∴,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y(x>0)上,∴k=2×3=6,故6.【点评】此题主要考查了正方形的性质,待定系数法,平移的性质,求出点C的坐标是解本题的关键.三、解答题(共52分)17.(6分)(2019秋•南山区期末)解下列方程:(1)x2+4x﹣5=0(2)(x﹣3)2=2(3﹣x)见试题解答内容【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.解:(1)∵x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x=﹣5或x=1;(2)∵)(x﹣3)2+2(x﹣3)=0,∴(x﹣3)(x﹣1)=0,则x﹣3=0或x﹣1=0,解得x=3或x=1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(6分)(2019秋•南山区期末)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.见试题解答内容【分析】(1)直接利用概率公式计算可得;(2)先画树状图展示所有9种等可能的结果数,再找出其中小智和小慧被分到同一个项目标组进行志愿服务的结果数,然后根据概率公式计算.解:(1)小智被分配到A“全程马拉松”项目组的概率为,故;(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分到同一个项目标组进行志愿服务的结果数为3,所以小智和小慧被分到同一个项目标组进行志愿服务的概率为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.(7分)(2019秋•南山区期末)如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.见试题解答内容【分析】(1)先利用矩形的性质得∠D=∠1=∠2+∠3=90°,然后根据等角的余角相等得到∠2=∠4,则可判断△CDE∽△CBF;(2)先∴BF=AB,设CD=BF=x,再利用△CDE∽△CBF,则可根据相似比得到,然后利用比例性质求出x即可.(1)证明:∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE∴∠4+∠3=90°∴∠2=∠4,∴△CDE∽△CBF;(2)解:∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点∴BF=AB,设CD=BF=x∵△CDE∽△CBF,∴,∴,∵x>0,∴x,即CD的长为.【点评】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质.20.(8分)(长清区一模)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y(x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)将这个菱形沿x轴正方向平移,当顶点D落在反比例函数图象上时,求菱形平移的距离.见试题解答内容【分析】(1)根据点D的坐标为(4,3),即可得出DE的长以及DO的长,即可得出A点坐标,进而求出k的值;(2)根据D′F′的长度即可得出D′点的纵坐标,进而利用反比例函数的性质求出OF′的长,即可得出答案;解:(1)作DE⊥BO,DF⊥x轴于点F,,∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5,∴A点坐标为:(4,8),∴xy=4×8=32,∴k=32;(2)∵将菱形ABCD向右平移,使点D落在反比例函数y(x>0)的图象上,∴DF=3,D′F′=3,∴D′点的纵坐标为3,∴3,x,∴OF′,∴FF′4,∴菱形ABCD向右平移的距离为:.【点评】本题主要考查反比例函数图象上点的坐标特征,利用了菱形的性质,利用了平移的特点,根据已知得出A点坐标是解题关键.21.(8分)(2019秋•南山区期末)深圳著名“网红打卡地”东部华侨城在2018年春节长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客奖达28.8万人次.一家特色小面店希望在五一长期限期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护深圳城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?见试题解答内容【分析】(1)可设年平均增长率为x,根据等量关系:2018年五一长假期间,接待游客达20万人次,在2020年五一长假期间,接待游客将达28.8万人次,列出方程求解即可;(2)可设每碗售价定为y元时,店家才能实现每天利润6300元,根据利润的等量关系列出方程求解即可.解:(1)可设年平均增长率为x,依题意有20(1+x)2=28.8,解得x1=0.2=20%,x2=﹣2.2(舍去).答:年平均增长率为20%;(2)设每碗售价定为y元时,店家才能实现每天利润6300元,依题意有(y﹣6)[300+30(25﹣y)]=6300,解得y1=20,y2=21,∵每碗售价不得超过20元,∴y=20.答:当每碗售价定为20元时,店家才能实现每天利润6300元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(8分)(2019秋•南山区期末)在△ABC中,∠ACB=90°,AB=20,BC=12.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,则HQ=4.(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.见试题解答内容【分析】(1)利用勾股定理求出AC,设HQ=x,根据S△ABC=9S△DHQ,构建方程即可解决问题;(2)想办法证明四边相等即可解决问题;(3)设AE=EM=FM=AF=4m,则BM=3m,FB=5m,构建方程求出m的值,分两种情形分别求解即可解决问题.解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=12,∴AC16,设HQ=x,∵HQ∥BC,∴,∴,∴AQx,∵S△ABC=9S△DHQ,∴16×12=9xx,∴x=4或﹣4(舍弃),∴HQ=4,故答案为4.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=4m,则BM=3m,FB=5m,∴4m+5m=20,∴m,∴AE=EM,∴EC=AC﹣AE=16,∴CM,∵QH=4,AQ,∴QC,设PQ=x,当时,△HQP∽△MCP,∴,解得:x,当时,△HQP∽△PCM,∴解得:x=8或,经检验:x=8或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.【点评】本题属于相似形综合题,考查了翻折变换,三角形的面积,菱形的判定和性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论