




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标ky=-1•理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,^r°),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3•能根据图象数形结合地分析并掌握反比例函数(k为常数,匕于°)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.对于实际问题,能"找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点•重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.•难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念(泳汕)可以写成卩一厂('二“)的形式,注意自变量x的指数为一1,在解决有关自变量指数问题时应特别注意系数忙[这一限制条件;,:y——()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3•反比例函数的自变量心,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质k■p=—1•函数解析式:(*Ji)2.自变量的取值范围:'严。3•图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当上''匚时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(一”,-;)在双曲线的另一支上•图象关于直线丁"对称,即若(a,b)在双曲线的一支上,则(,总)和(,)在双曲线的另一支上.4.k的几何意义■t如图1,设点P(a,b)是双曲线上任意一点,作PA3X轴于A点,PB阿轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC0PA的延长线于C,则1图2
(2)直线一小与双曲线的关系:当时,两图象没有交点;当吒甩"时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1•求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2•注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.A.y=3xBA.y=3xB.C.3xy=1(2)下列函数中,y是x的反比例函数的是().B.C.;B.C.;■11—D.2•图象和性质(1)已知函数是反比例函数,若它的图象在第二、四象限内,那么k=②若y随x的增大而减小,那么k=(2)已知一次函数y=ax+b的图象经过第一、(2)已知一次函数y=ax+b的图象经过第一、二、四象限,?-—则函数的图象位于第.象限.象限.丁"IT?——象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第.--(4)已知ab<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是()•第一象限第二象限第三象限第四象限第一象限第二象限第三象限第四象限_2(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限恥':”,且吩则HA.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限恥':”,且吩则H的值为()•A.正数B.负数C.非正数D.非负数-.J--I,1:=r.'i(2)在函数(a为常数)的图象上有三个点'-7化士九rr4,2,则函数值刃、丫*的大小关系是().A.<儿<兀B.七<乃<C.川<兀<D.儿<兀<_J-y=—p=_⑶下列四个函数中:①厂3②:③:④2.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(1)在反比例函数的图象上有两点已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x〉0时,这个反比例函数的函数值y随x数的函数值y随x的增大而(填"增大”或"减小”).4•解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数BA.正比例函数B.反比例函数C.一次函数D.不能确定卜>■--(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=它们的另一个交点为.y~—--c->-—隔已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P(x0,3).①求x0的值;②求一次函数和反比例函数的解析式.
(5)为了预防"非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:药物燃烧时y关于x的函数关系式为,自变量x的取值范围是;药物燃烧后y关于x的函数关系式为.研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过分钟后,学生才能回到教室;研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭Z---(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则()•JJ:_-(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,国ABC的面积S,贝y().A.S=1B.1<S<2C.S=2D.S〉2y=—(3)如图,R也AOB的顶点A在双曲线上,且S0AOB=3,求m的值.第(3)题图第(3)题图第(4)题图已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2Q2,P2R2,垂足分别为Q2,R2,求矩形OQ1P1R1和OQ2P2R2的周长,并比较它们的大小.I--如图,正比例函数y=kx(k〉0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若国ABC面积为S,则S=.第(5)题图第(6)题图}[—如图在Rt0ABO中,顶点A是双曲线与直线在第四象限的交点,AB馭轴于B2且S国ABO=:.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和0AOC的面积.如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数<*.v----(k〉0,x〉0)的图象上,点P(m,n)是函数(k〉0,x〉0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.6•综合应用6•综合应用y=—__(1)若函数y=k1x(k1H0)和函数(k2工0)在同一坐标系内的图象没有公共点,则k1和k2()•()•A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数x的图象与反比例数-:的图象交于A、B两点:AC2,1),B(1,n).求反比例函数和一次函数的解析式;根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.B两点,且与反比例函数(m^O)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得0POC和国POD的面积相等?若存在,给出证明并求出点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国U-PVC吊柜行业深度研究分析报告
- 2025-2030年中国一次性使用脐带剪断器项目投资可行性研究分析报告
- 委托代理合同书
- 外聘专家顾问合同范本
- 2025合同范本二手汽车交易协议
- 2025总代理的合同范本
- 2025标准个人借款担保合同
- 2025版权许可协议合同模板
- 2025药品技术许可合同
- 统编版语文六年级下册习作《写作品梗概》精美课件
- 干部履历表(中共中央组织部2015年制)
- 贵溪鲍家矿业有限公司采矿权出让评估报告书
- 低压电气基础知识培训课件
- 《活着》读书分享优秀课件
- 16起触电事故案例分析
- 额定电压35kV及以下电力电缆技术规范
- 各种配电箱接线系统图25024
- 小升初自我介绍、幼升小学生个人简历、儿童简历word模板
- 童年歌词拼音版
- 托兰斯创造性思维测验-词汇.
- 重力坝设计计算表格
评论
0/150
提交评论