2022-2023学年福建省泉州市惠安县第四中学高二数学文联考试题含解析_第1页
2022-2023学年福建省泉州市惠安县第四中学高二数学文联考试题含解析_第2页
2022-2023学年福建省泉州市惠安县第四中学高二数学文联考试题含解析_第3页
2022-2023学年福建省泉州市惠安县第四中学高二数学文联考试题含解析_第4页
2022-2023学年福建省泉州市惠安县第四中学高二数学文联考试题含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年福建省泉州市惠安县第四中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数的导函数满足对恒成立,则下列不等式中一定成立的是()A. B.C. D.参考答案:A【分析】求出函数g(x)的导数,判断函数的单调性,从而得出答案.【详解】令由(x+xlnx)f′(x)<f(x),得(1+lnx)f′(x)f(x)<0,g′(x),则g′(x)<0,故g(x)在递减;故,即,∴故选:A【点睛】本题考查抽象函数的单调性,构造函数,准确构造新函数是突破,准确判断单调性是关键,是中档题2.双曲线﹣y2=1的实轴长为()A.4 B.2 C. D.1参考答案:A【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】求出双曲线的a=2,即可得到双曲线的实轴长2a.【解答】解:双曲线﹣y2=1的a=2,则双曲线的实轴长为2a=4,故选A.【点评】本题考查双曲线的方程和性质,考查实轴的概念,考查运算能力,属于基础题.3.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的余弦值是()A. B. C. D.0参考答案:D【考点】用空间向量求直线间的夹角、距离;异面直线及其所成的角.【分析】以DA,DC,DD1所在直线方向x,y,z轴,建立空间直角坐标系,可得和的坐标,进而可得cos<,>,可得答案.【解答】解:以DA,DC,DD1所在直线方向x,y,z轴,建立空间直角坐标系,则可得A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0)∴=(﹣1,0,﹣1),=(1,﹣1,﹣1)设异面直线A1E与GF所成角的为θ,则cosθ=|cos<,>|=0,故选:D4.函数

(

)A.奇函数

B.偶函数

C.既是奇函数又是偶函数

D.非奇非偶函数

参考答案:C5.在中,,,则

A.

B.

C.

D.1参考答案:C6.如果命题“非p为真”,命题“p且q为假”,那么下列选项一定正确的是(

A.q为真

B.q为假

C.p或q为真

D.p或q不一定为真参考答案:D7.命题“对任意的”的否定是(

)A.不存在

B.存在C.存在

D.对任意的参考答案:C8.函数的定义域为( )A. B.C. D.参考答案:C略9.设偶函数上递增,则的大小关系是(

) A. B. C. D.参考答案:B2.设,则的大小关系是A.

B.

C.

D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是

参考答案:12.如图,有组数据,去掉

组(即填A,B,C,D,E中的某一个)后,剩下的四组数据的线性相关系数最大。

参考答案:D组13.已知实数a,b满足,,则的最小值为

.参考答案:14.在平面直角坐标系xOy中,给定两个定点M(﹣1,2)和N(1,4),点P在x轴上移动,当∠MPN取最大值时,点P的横坐标是

.参考答案:1【考点】两直线的夹角与到角问题;直线的斜率.【专题】转化思想;综合法;直线与圆.【分析】∠MPN为弦MN所对的圆周角,故当圆的半径最小时,∠MPN最大,设过MN且与x轴相切的圆与x轴的切点为P,则P点的横坐标即为所求.【解答】解:过M、N两点的圆的圆心在线段MN的中垂线y=3﹣x上,设圆心E(a,3﹣a),∠MPN为弦MN所对的圆周角,故当圆的半径最小时,∠MPN最大.由于点P在x轴上移动,故当圆和x轴相切时,∠MPN最大,此时,切点P(a,0),圆的半径为|a|.因为M,N,P三点在圆上,∴EN=EP,∴(a+1)2+(a﹣2)2=(a﹣1)2+(a﹣4)2,整理可得,a2+6a﹣7=0.解方程可得a=1,或a=﹣7(舍去),故答案为:1.【点评】本题主要考查了圆的性质圆外的角小于圆周角在求解角的最值中的应用,属于基础题.15.设△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为,则__________.参考答案:由余弦定理得,,又,联立两式得,,.16.某少数民族刺绣有着悠久历史,下图中的(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成的,小正方形越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(5)=,f(n)=.参考答案:41,2n2﹣2n+1.【考点】F1:归纳推理.【分析】先分别观察给出正方体的个数为:1,1+4,1+4+8,…总结一般性的规律,将一般性的数列转化为特殊的数列再求解.【解答】解:根据前面四个发现规律:f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n)﹣f(n﹣1)=4(n﹣1)这n﹣1个式子相加可得:f(n)=2n2﹣2n+1.当n=5时,f(5)=41.故答案为:41;2n2﹣2n+1.17.已知正四棱锥S-ABCD所有棱长均为2,若E为棱SC的中点,则异面直线BE与SA所成角的正切值为______________。参考答案:设正方形ABCD的中心为O,连接EO,OB,则即是异面直线与所成角.易知,所以在中,.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=x3+x,g(x)=f(x)﹣ax(a∈R).(1)当a=4时,求函数g(x)的极大值;(2)求曲线y=f(x)在点(1,f(1))处的切线l的方程;(3)若函数g(x)在上无极值,且g(x)在上的最大值为3,求a的值.参考答案:【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【分析】(1)求出g(x),求出导函数,根据导函数得出函数的极值即可;(2)求出导函数,根据导函数和切线方程的关系求解即可;(3)求出g'(x)=3x2+1﹣a,函数g(x)在上无极值,得出1﹣a≥0或4﹣a≤0,分类讨论即可.【解答】解:(1)g(x)=x3﹣3x,∴g'(x)=3x2﹣3,当﹣1<x<1时,g'(x)<0,当x<﹣1或s>1时,g'(x)>0,∴g(x)的极大值为g(﹣1)=2;(2)f'(x)=3x2+1,f'(1)=4,f(1)=2,∴切线l的方程为y﹣2=4(x﹣1),即y=4x﹣2;(3)g'(x)=3x2+1﹣a,当1﹣a≥0时,g'(x)≥0,g(x)递增;∴最大值为g(1)=2﹣a=3,a=﹣1;当4﹣a≤0时,g'(x)≤0,g(x)递减;∴最大值为g(0)=0≠3,综上a=﹣1.19.(12分)已知椭圆方程为,它的一个顶点为,离心率.(1)求椭圆的方程;(2)设直线与椭圆交于A,B两点,坐标原点O到直线的距离为,求△AOB面积的最大值.参考答案:(1)设,依题意得

…………2分解得

…….3分椭圆的方程为

………….4分(2)①当AB

………5分②当AB与轴不垂直时,设直线AB的方程为,由已知得

……..6分代入椭圆方程,整理得

………7分

当且仅当时等号成立,此时…10分③当

………..11分综上所述:,此时面积取最大值……12分20.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.参考答案:【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0,=n>0,可得2x≥y+z?m3+n3≥m2n+mn2?(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0,=n>0,则2x≥y+z?m3+n3≥m2n+mn2.?(m﹣n)2≥0,上式显然成立,因此:x+1≥.21.已知函数f(x)=x3+ax2+bx+c在x=﹣1与x=2处都取得极值.(Ⅰ)求a,b的值及函数f(x)的单调区间;(Ⅱ)若对x∈[﹣2,3],不等式f(x)+c<c2恒成立,求c的取值范围.参考答案:【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;R6:不等式的证明.【分析】(1)求出f′(x)并令其=0得到方程,把x=﹣1和x=2代入求出a、b即可;(2)求出函数的最大值为f(﹣1),要使不等式恒成立,既要证f(﹣1)+c<c2,即可求出c的取值范围.【解答】解:(Ⅰ)f′(x)=3x2+2ax+b,由题意:即解得∴,f′(x)=3x2﹣3x﹣6令f′(x)<0,解得﹣1<x<2;令f′(x)>0,解得x<﹣1或x>2,∴f(x)的减区间为(﹣1,2);增区间为(﹣∞,﹣1),(2,+∞).(Ⅱ)由(Ⅰ)知,f(x)在(﹣∞,﹣1)上单调递增;在(﹣1,2)上单调递减;在(2,+∞)上单调递增.∴x∈[﹣2,3]时,f(x)的最大值即为f(﹣1)与f(3)中的较大者.;∴当x=﹣1时,f(x)取得最大值.要使,只需,即:2c2>7+5c解得:c<﹣1或.∴c的取值范围为.22.已知m∈R,设P:和是方程-ax-2=0的两个根,不等式|m-5|≤|-|对任意实数a∈[1,2]恒成立;Q:函数f(x)=3+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论