




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.2.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④3.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A. B. C. D.大小关系不能确定4.已知定义在上的奇函数满足,且当时,,则()A.1 B.-1 C.2 D.-25.在中,角的对边分别为,若,则的形状为()A.直角三角形 B.等腰非等边三角形C.等腰或直角三角形 D.钝角三角形6.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件7.设复数满足,则()A.1 B.-1 C. D.8.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.9.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.40010.已知复数和复数,则为A. B. C. D.11.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.12.的展开式中含的项的系数为()A. B.60 C.70 D.80二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中第项与第项的二项式系数相等,则__________.14.根据如图的算法,输出的结果是_________.15.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种.(用数字作答)16.已知向量,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.18.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.19.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.20.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.21.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82822.(10分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.2.C【解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.3.B【解析】
先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得.【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为.又,故.故选B.【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题.4.B【解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.【详解】∵是定义在R上的奇函数,且;∴;∴;∴的周期为4;∵时,;∴由奇函数性质可得;∴;∴时,;∴.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.5.C【解析】
利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:.【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.6.B【解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.7.B【解析】
利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.8.C【解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.9.B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.10.C【解析】
利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.11.B【解析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【点睛】本题主要考查定积分的概念与计算,属于中等题.12.B【解析】
展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为.故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据的展开式中第项与第项的二项式系数相等,得到,再利用组合数公式求解.【详解】因为的展开式中第项与第项的二项式系数相等,所以,即,所以,即,解得.故答案为:10【点睛】本题主要考查二项式的系数,还考查了运算求解的能力,属于基础题.14.55【解析】
根据该For语句的功能,可得,可得结果【详解】根据该For语句的功能,可得则故答案为:55【点睛】本题考查For语句的功能,属基础题.15.1.【解析】试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1.考点:排列、组合及简单计数问题.点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详.16.【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2);(3)利润约为111.2万元.【解析】
(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,,,,,,,,,,共计10个,故恰好有两个月考核合格的概率为;(2),,,,故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【点睛】本题主要考查了古典概型,线性回归方程的求解和使用,属于基础题.18.(1).(2)【解析】
(1)利用正弦定理的边角互化可得,再根据,利用两角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【详解】(1)由正弦定理知由己知,而∴,(2)已知,则由知先求∴∴∴【点睛】本题主要考查了正弦定理解三角形、三角形的性质、两角和的正弦公式,需熟记定理与公式,属于基础题.19.(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.∵曲线与直线相交于不同的两点,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角,是参数),这样的参数方程中的参数有明确的几何意义,它表示之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.20.(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案.【详解】解:(Ⅰ)取的中点为,连结.由是三棱台得,平面平面,从而.∵,∴,∴四边形为平行四边形,∴.∵,为的中点,∴,∴.∵平面平面,且交线为,平面,∴平面,而平面,∴.(Ⅱ)连结.由是正三角形,且为中点,则.由(Ⅰ)知,平面,,∴,,∴,,两两垂直.以,,分别为,,轴,建立如图所示的空间直角坐标系.设,则,,,,∴,,.设平面的一个法向量为.由可得,.令,则,,∴.设与平面所成角为,则.【点睛】本题考查了空间几何中,面面垂直的性质,线线垂直的证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五汽车租赁公司合伙合同
- 二零二五版彩礼返还离婚标准协议书
- 药品货物运输服务合同范例二零二五年
- 二零二五版房地产分销合同范文
- 二零二五员工培训合同标准范文
- 二零二五版物流仓储租赁合同范例
- 二零二五简单的担保合同
- 个人以房产抵债协议
- 二零二五商铺租赁合同转让协议
- 项目融资服务协议书
- 统编版小学道德与法治三年级下册第9课《生活离不开规则》公开课课件
- 提高型钢混凝土梁柱节点施工合格率
- 2023年全国大学生英语竞赛初赛试卷(C类)与答案
- 计算机系毕业论文
- 富士施乐cp105深度拆解
- 双基地FMCW MIMO雷达时频同步技术研究
- 陕北白绒山羊疫病防控综合技术2016420课件
- JJG 814-2015自动电位滴定仪
- 中班社会《光盘行动从我做起》课件
- GB/T 13384-2008机电产品包装通用技术条件
- 新教科版五年级下册科学期中测试卷(含答案)
评论
0/150
提交评论