福建省泉州台商投资区2022年数学九年级上册期末质量跟踪监视模拟试题含解析_第1页
福建省泉州台商投资区2022年数学九年级上册期末质量跟踪监视模拟试题含解析_第2页
福建省泉州台商投资区2022年数学九年级上册期末质量跟踪监视模拟试题含解析_第3页
福建省泉州台商投资区2022年数学九年级上册期末质量跟踪监视模拟试题含解析_第4页
福建省泉州台商投资区2022年数学九年级上册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图是某零件的模型,则它的左视图为()A. B. C. D.2.对于反比例函数,下列说法中不正确的是()A.点在它的图象上B.它的图象在第一、三象限C.随的增大而减小D.当时,随的增大而减小3.表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值:那么方程ax2+bx+c=0的一个根的近似值可能是()x…11.11.21.31.4…y…﹣1﹣0.490.040.591.16…A.1.08 B.1.18 C.1.28 D.1.384.下列函数中属于二次函数的是()A.y=x B.y=2x2-1 C.y= D.y=x2++15.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a≠0).下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为()x(单位:m)y(单位:m)3.05A. B. C. D.6.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(2,﹣3) D.(﹣3,﹣3)7.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C. D.8.27的立方根是()A.±3 B.±3 C.3 D.39.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.10.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A. B. C. D.11.对于二次函数的图象,下列结论错误的是()A.顶点为原点 B.开口向上 C.除顶点外图象都在轴上方 D.当时,有最大值12.如图,在Rt△ABC中,∠C=Rt∠,则cosA可表示为(

)A. B. C. D.二、填空题(每题4分,共24分)13.将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为_______________________.14.(2016湖北省咸宁市)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为.其中正确的是________(把你认为正确结论的序号都填上).15.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.16.在中,若,则是_____三角形.17.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____18.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.三、解答题(共78分)19.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.20.(8分)如图,在四边形中,,点为的中点,.(1)求证:∽;(2)若,,求线段的长.21.(8分)如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.(1)证明点D是AB边上的黄金分割点;(2)证明直线CD是△ABC的黄金分割线.22.(10分)如图,一次函数与反比例函数的图象交于、两点,与坐标轴分别交于、两点.(1)求一次函数的解析式;(2)根据图象直接写出中的取值范围;(3)求的面积.23.(10分)在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.24.(10分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回,搅匀,大量重复该实验,发现摸到绿球的频率稳定于0.2,求n的值;(2)若,小明两次摸球(摸出一球后,不放回,再摸出一球),请用树状图画出小明摸球的所有结果,并求出两次摸出不同颜色球的概率.25.(12分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.26.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1),以原点为位似中心,在原点的另一侧画出△A1B1C1,使=,并写出△A1B1C1各顶点的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.2、C【解析】根据反比例函数的性质用排除法解答,当系数k>0时,函数图象在第一、三象限,当x>0或x<0时,y随x的增大而减小,由此进行判断.【详解】A、把点(-2,-1)代入反比例函数y=得-1=-1,本选项正确;

B、∵k=2>0,∴图象在第一、三象限,本选项正确;

C、∵k=2>0,∴图象在第一、三象限内y随x的增大而减小,本选项不正确;

D、当x<0时,y随x的增大而减小,本选项正确.

故选C.【点睛】考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3、B【分析】观察表中数据得到抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),然后根据抛物线与x轴的交点问题可得到方程ax2+bx+c=0一个根的近似值.【详解】∵x=1.1时,y=ax2+bx+c=﹣0.49;x=1.2时,y=ax2+bx+c=0.04;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),∴方程ax2+bx+c=0有一个根约为1.1.故选:B.【点睛】本题主要考查抛物线与x轴的交点问题,掌握二次函数的图象与x轴的交点的横坐标与一元二次方程的根的关系,是解题的关键.4、B【解析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A.y=x是正比例函数,不符合题意;B.y=2x2-1是二次函数,符合题意;C.y=不是二次函数,不符合题意;D.y=x2++1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.5、C【分析】用待定系数法可求二次函数的表达式,从而可得出答案.【详解】将代入中得解得∴∵∴当时,故选C【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键.6、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数即可.【详解】解:由题意,得

点P(-2,3)关于原点对称的点的坐标是(2,-3),

故选C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7、D【分析】根据∠1=∠2,可知∠DAE=∠BAC,因此只要再找一组角或一组对应边成比例即可.【详解】解:A和B符合有两组角对应相等的两个三角形相似;C、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选D.【点睛】考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.8、C【分析】由题意根据如果一个数x的立方等于a,那么x是a的立方根,据此定义进行分析求解即可.【详解】解:∵1的立方等于27,∴27的立方根等于1.故选:C.【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.9、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A.一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B.由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C.由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D.由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.【点睛】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法.10、C【解析】利用黑色区域的面积除以游戏板的面积即可.【详解】黑色区域的面积=3×33×12×23×1=4,所以击中黑色区域的概率.故选C.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.11、D【分析】根据二次函数的性质逐项判断即可.【详解】根据二次函数的性质,可得:二次函数顶点坐标为(0,0),开口向上,故除顶点外图象都在x轴上方,故A、B、C正确;当x=0时,y有最小值为0,故D错误.故选:D.【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键.12、C【解析】解:cosA=,故选C.二、填空题(每题4分,共24分)13、y=-x2+5【分析】根据二次函数的图像平移方法“左加右减,上加下减”可直接进行求解.【详解】由将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为;故答案为.【点睛】本题主要考查二次函数的图像平移,熟练掌握二次函数的图像平移方法是解题的关键.14、①②.【解析】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE与△COF中,∵OB=OC,∠BOE=∠COF,OE=OF,∴△BOE≌△COF,∴BE=CF,∴,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=15°,∴△BOG≌△COH,∴OG=OH.∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确;③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=1.设BG=x,则BH=1﹣x,则GH====,∴其最小值为,∴△GBH周长的最小值=GB+BH+GH=1+,D错误.故答案为①②.15、(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).

连接MC,MD,

∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,

又∵MC为半径,

∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.16、等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出∠A和∠B的角度,即可得出答案.【详解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案为等腰.【点睛】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值.17、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.18、【分析】求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为.【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.三、解答题(共78分)19、(1)y=;y=-x+6(2)【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.20、(1)见解析;(2)1.【分析】(1)由得出,从而有,等量代换之后有,再加上即可证明相似;(2)由相似三角形的性质可求出AE的长度,进而求出AB的长度,过点D作DF⊥BC于点F,则四边形ABFD是矩形,得出,从而求出CF的长度,最后利用勾股定理即可求解.【详解】(1)(2)过点D作DF⊥BC于点F∵点为的中点∵,,,DF⊥BC∴四边形ABFD是矩形【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.21、(1)详见解析;(2)详见解析.【分析】(1)证明AD=CD=BC,证明△BCD∽△BCA,得到.则有,所以点D是AB边上的黄金分割点;(2)证明,直线CD是△ABC的黄金分割线;【详解】解:(1)点D是AB边上的黄金分割点.理由如下:AB=AC,∠A=,∠B=∠ACB=.CD是角平分线,∠ACD=∠BCD=,∠A=∠ACD,AD=CD.∠CDB=180-∠B-∠BCD=,∠CDB=∠B,BC=CD.BC=AD.在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=,△BCD∽△BCA,点D是AB边上的黄金分割点.(2)直线CD是△ABC的黄金分割线.理由如下:设ABC中,AB边上的高为h,则,,,由(1)得点D是AB边上的黄金分割点,,直线CD是△ABC的黄金分割线【点睛】本题主要考查三角想相似及相似的性质,注意与题中黄金分割线定义相结合解题.22、(1)y=-2x+6;(2)或;(1)1.【解析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(1)将△AOB的面积转化为S△AON-S△BON的面积即可.【详解】(1)∵点在反比例函数上,∴,解得,∴点的坐标为,又∵点也在反比例函数上,∴,解得,∴点的坐标为,又∵点、在的图象上,∴,解得,∴一次函数的解析式为.(2)根据图象得:时,的取值范围为或;(1)∵直线与轴的交点为,∴点的坐标为,.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,利用图像解不等式,及割补法求图形的面积,数形结合是解题的关键.23、(1);(2)点P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,先求出点A,点B坐标,可得OA=2,OB=1,AM=1,由勾股定理可求AB长,由锐角三角函数可求解;(2)设点P(a,),用参数a表示MN的长,由面积关系可求a的值,即可求点P坐标;(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),通过证明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根与系数关系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直线y=k(x﹣4)+1过定点N(4,1),则当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,由待定系数法可求直线PN的解析式,可求k,m的值,即可求解.【详解】解:(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,∵直线l:y=x﹣1与x轴,y轴的交点为点A,点B,∴点A(2,0),点B(0,﹣1),且点M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴点M到直线l:y=x﹣1的距离为;(2)设点P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM⊥x轴,PN⊥y轴,∠MON=10°,∴四边形PMON是矩形,∴S△PMN=S矩形PMON=2,∴×MN×d0=2,∴×=4,∴a4﹣10a2+16=0,∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),∴点P(,2)或(2,),(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),∵∠AOB=10°,∴∠AOC+∠BOD=10°,且∠AOC+∠CAO=10°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴,∴∴ab﹣4(a+b)+17=0,∵直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B,∴a,b是方程kx+m=x2﹣4x的两根,∴a+b=k+4,ab=﹣m,∴﹣m﹣4(k+4)+17=0,∴m=1﹣4k,∴y=kx+1﹣4k=k(x﹣4)+1,∴直线y=k(x﹣4)+1过定点N(4,1),∴当PN⊥直线y=kx+m时,点P到直线y=kx+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论