北京市怀柔区2022-2023学年数学九年级上册期末检测模拟试题含解析_第1页
北京市怀柔区2022-2023学年数学九年级上册期末检测模拟试题含解析_第2页
北京市怀柔区2022-2023学年数学九年级上册期末检测模拟试题含解析_第3页
北京市怀柔区2022-2023学年数学九年级上册期末检测模拟试题含解析_第4页
北京市怀柔区2022-2023学年数学九年级上册期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.2.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米 B.2分米 C.3分米 D.3分米3.已知点C为线段AB延长线上的一点,以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为()A.点B在⊙A上 B.点B在⊙A外 C.点B在⊙A内 D.不能确定4.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.75.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5 B.4.2 C.5.8 D.77.如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()A.1: B.1:3 C.1:8 D.1:98.如图,我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中是中心对称图形的是()A. B. C. D.9.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.210.下列说法正确的是()A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定D.一组数据1,5,3,2,3,4,8的众数和中位数都是311.的相反数是()A. B. C.2019 D.-201912.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.100m C.150m D.50m二、填空题(每题4分,共24分)13.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.14.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.15.当时,函数的最大值是8则=_________.16.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.17.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm218.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图(1)位置,第二次旋转至图(2)位置…,则正方形铁片连续旋转2018次后,点P的纵坐标为_________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.20.(8分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.21.(8分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西方向上有一小岛C,小岛C在观测站B的北偏西方向上,码头A到小岛C的距离AC为10海里.(1)填空:度,度;(2)求观测站B到AC的距离BP(结果保留根号).22.(10分)计算:|1﹣|+(2019﹣50)0﹣()﹣223.(10分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.24.(10分)如图,已知等边△ABC,AB=1.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.25.(12分)解不等式组,并把解集在数轴上表示出来:26.某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.

参考答案一、选择题(每题4分,共48分)1、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【详解】∵二次函数,当时,该函数取最大值8∴,当y=0时,∴∵∴∴∴故选:B【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.2、B【分析】连接OC,作OE⊥CD,根据垂径定理和勾股定理求解即可.【详解】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故选:B.【点睛】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.3、C【分析】根据题意确定AC>AB,从而确定点与圆的位置关系即可.【详解】解:∵点C为线段AB延长线上的一点,∴AC>AB,∴以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为点B在⊙A内,故选:C.【点睛】本题考查的知识点是点与圆的位置关系,根据题意确定出AC>AB是解此题的关键.4、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.5、B【解析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.6、D【详解】解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的长不能大于1.∴故选D.7、C【分析】易证△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,继而求得S△ADE:S四边形BCED的值.【详解】∵,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四边形BCED=1:8,故选C.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.8、B【解析】根据中心对称图形的概念逐一判断即可.【详解】A.不是中心对称图形,故该选项不符合题意,B.是中心对称图形,符合题意,C.不是中心对称图形,故该选项不符合题意,D.不是中心对称图形,故该选项不符合题意,故选:B.【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【分析】作OE⊥AC交⊙O于F,交AC于E,连接CO,根据折叠的性质得到OE=OF,根据直角三角形的性质求出∠CAB,再得到∠COB,再分别求出S△ACO与S扇形BCO即可求解..【详解】作OE⊥AC交⊙O于F,交AC于E,由折叠的性质可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,连接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴线段、和弧所围成的曲边三角形的面积为S△ACO+S扇形BCO===≈3.8故选C.【点睛】本题考查的是翻折变换的性质、圆周角定理,扇形的面积求解,解题的关键是熟知折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、D【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;故选:D.【点睛】本题考查统计的相关概念,关键在于熟记概念.11、A【解析】直接利用相反数的定义分析得出答案.【详解】解:的相反数是:.故选A.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.12、A【解析】∵堤坝横断面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故选A二、填空题(每题4分,共24分)13、【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),

∴AB==5,

由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,

∵2019÷3=673,

∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,

∵673×12=8076,

∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.14、1【解析】根据已知得出阴影部分即为平行四边形的面积.【详解】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=1.

故答案是:1.【点睛】本题考查了二次函数图象与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积.15、或【分析】先求出二次函数的对称轴,根据开口方向分类讨论决定取值,列出关于a的方程,即可求解;【详解】解:函数,则对称轴为x=2,对称轴在范围内,当a<0时,开口向下,有最大值,最大值在x=2处取得,即=8,解得a=;当a>0时,开口向上,最大值在x=-3处取得,即=8,解得a=;故答案为:或;【点睛】本题主要考查了二次函数的最值,掌握二次函数的性质是解题的关键.16、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,=36-36k>2,

解得k<1.

故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.17、60π【详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm1.18、1【分析】由旋转方式和正方形性质可知点P的位置4次一个循环,首先根据旋转的性质求出P1~P5的坐标,探究规律后,再利用规律解决问题.【详解】解:∵顶点A的坐标为(3,0),点P(1,2),∴第一次旋转90°后,对应的P1(5,2),

第二次P2(8,1),

第三次P3(10,1),

第四次P4(13,2),

第五次P5(17,2),

发现点P的位置4次一个循环,

∵2018÷4=504余2,

P2018的纵坐标与P2相同为1,故答案为:1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.三、解答题(共78分)19、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.20、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,,∴当时,的面积有最大值,最大值是,此时点坐标为.(2)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,∵,,∴,,∴,∵,∴,∴,∵、关于轴对称,∴,∴,此时最小,∵,,∴,∴.∴的最小值是2.【点睛】主要考查了二次函数的平移和待定系数法求函数的解析式、二次函数的性质、相似三角形的判定与性质、锐角三角函数的有关计算和利用对称的性质求最值问题.解(1)题的关键是熟练掌握待定系数法和相关点的坐标的求解;解(2)题的关键是灵活应用二次函数的性质求解;解(2)题的关键是作关于轴的对称点,灵活应用对称的性质和锐角三角函数的知识,学会利用数形结合的思想和转化的数学思想把求的最小值转化为求的长度.21、(1)30,45;(2)(5-5)海里【分析】(1)由题意得:,,由三角形内角和定理即可得出的度数;(2)证出是等腰直角三角形,得出,求出,由题意得出,解得即可.【详解】解:(1)由题意得:,,;故答案为30,45;(2),,,是等腰直角三角形,,,,,,解得:,答:观测站B到AC的距离BP为海里.【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.22、-4【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1﹣|+(2019﹣50)0﹣()﹣2=﹣1+1﹣4=﹣4【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.23、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)【分析】(1)c=1,点B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.【详解】(1)∵OB=OC=1,∴点C的坐标为C(0,1),c=1,点B的坐标为B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴于点H,交BC于点M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,设直线BC的表达式为:,将C(0,1),B(1,0)代入得,解得:,∴直线BC的表达式为:y=﹣x+1,设点D的坐标为(x,﹣x2+2x+1),则点M(x,﹣x+1),∴DM==2,解得:x=1或2,故点D的坐标为:(1,4)或(2,1);(1)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,如图,∵点E的坐标为(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,设MH=x,则MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,则OM=MG+GO=+,点M的坐标为(0,4),设直线BM的表达式为:,将点B(1,0)、M(0,4)代入得:,解得:,∴直线BM的表达式为:y=x+4,解方程组解得:x=1(舍去)或,将x=代入y=x+4得y=,故点P的坐标为(,);②当点P在x轴下方时,如图,过点E作EN⊥BP,直线PB交y轴于点M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分线,∴EN=OE=,BN=OB=1,设MN=x,则ME=,在△OBM中,OB2+OM2=MB2,即,解得:,∴,则OM=ME+EO=+,点M的坐标为(0,-4),设直线BM的表达式为:,将点B(1,0)、M(0,-4)代入得:,解得:,∴直线BM的表达式为:,解方程组解得:x=1(舍去)或,将x=代入得,故点P的坐标为(,);综上,点P的坐标为:(,)或(,).【点睛】本题考查的是二次函数的综合运用,涉及到一次函数、平行线分线段成比例定理、勾股定理、角平分线的性质等,其中第(1)问要注意分类求解,避免遗漏.24、(1)详见解析;(2);(3)【分析】(1)如图所示,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论