2022年重庆市彭水县九年级数学上册期末综合测试试题含解析_第1页
2022年重庆市彭水县九年级数学上册期末综合测试试题含解析_第2页
2022年重庆市彭水县九年级数学上册期末综合测试试题含解析_第3页
2022年重庆市彭水县九年级数学上册期末综合测试试题含解析_第4页
2022年重庆市彭水县九年级数学上册期末综合测试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.82.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=4,AB=6,BC=12,则DE等于()A.4 B.6 C.8 D.103.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y34.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:35.sin30°等于()A. B. C. D.6.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为()A.3cm B.6cm C.12cm D.24cm7.数据0,-1,-2,2,1,这组数据的中位数是()A.-2 B.2 C.0.5 D.08.如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个动点.连接,当最大时,点的坐标是()A. B. C. D.9.已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是()A.16 B.-4 C.4 D.810.如图,在△ABC中,∠C=,∠B=,以点A为圆心,适当长为半径画弧,分别交AB,AC于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于P,作射线AP交BC于点D,下列说法不正确的是()

A.∠ADC= B.AD=BD C. D.CD=BD二、填空题(每小题3分,共24分)11.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.12.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.13.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.14.已知是方程的根,则代数式的值为__________.15.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.16.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)17.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.18.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是_____.三、解答题(共66分)19.(10分)计算:.20.(6分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂长为灯翠长为,底座厚度为根据使用习惯,灯臂的倾斜角固定为,(1)当转动到与桌面平行时,求点到桌面的距离;(2)在使用过程中发现,当转到至时,光线效果最好,求此时灯罩顶端到桌面的高度(参考数据:,结果精确到个位).21.(6分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5米/秒的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果保留根号)22.(8分)如图,在平面直角坐标系中,抛物线的顶点坐标为,与轴交于点,与轴交于点,.(1)求二次函数的表达式;(2)过点作平行于轴,交抛物线于点,点为抛物线上的一点(点在上方),作平行于轴交于点,当点在何位置时,四边形的面积最大?并求出最大面积.23.(8分)(1)已知如图1,在中,,,点在内部,点在外部,满足,且.求证:.(2)已知如图2,在等边内有一点,满足,,,求的度数.24.(8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?25.(10分)如图,是平行四边形的对角线,.(1)求证:四边形是菱形;(2)若,,求菱形的面积.26.(10分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是弧AmB上的一点.①求∠AQB的度数;②若OA=18,求弧AmB的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是1.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.2、C【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质可得出,再代入AD=4,AB=6,BC=12即可求出DE的长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=1.故选:C.【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.3、B【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.4、A【分析】过点D作DG∥AC,根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【详解】解:过点D作DG∥AC,与BF交于点G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中线,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故选:A.【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键.5、B【解析】分析:根据特殊角的三角函数值来解答本题.详解:sin30°=.故选B.点睛:本题考查了特殊角的三角函数值,特殊角三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.6、C【分析】根据OB=10cm,OM:MB=4:1,可求得OM的长,再根据垂径定理和勾股定理可计算出答案.【详解】∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM=(cm),∴CD=2CM=12cm,故选:C.【点睛】本题考查了垂径定理和勾股定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.7、D【分析】将数据从小到大重新排列,中间的数即是这组数据的中位数.【详解】将数据重新排列得:-2,-1,0,1,2,∴这组数据的中位数是0,故选:D.【点睛】此题考查数据的中位数,将一组数据从小到大重新排列,数据是奇数个时,中间的一个数是这组数据的中位数;数据是偶数个时,中间两个数的平均数是这组数据的中位数.8、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得≤AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大.求出点M的坐标即可.【详解】解:根据三角形三边的关系得:≤AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点.由可知,,对称轴设直线为.故直线解析式为当时,.故选:.【点睛】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,9、A【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=-8x+c的顶点的横坐标为x=-

=

-=4,∵顶点在x轴上,

∴顶点的坐标是(4,0),

把(4,0)代入y=-8x+c中,得:16-32+c=0,解得:c=16,故答案为A【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.10、C【分析】由题意可知平分,求出,,利用直角三角形角的性质以及等腰三角形的判定和性质一一判断即可.【详解】解:在中,,,,由作图可知:平分,,故A正确,故B正确,,,,,故C错误,设,则,,故D正确,故选:C.【点睛】本题考查作图复杂作图,角平分线的性质,线段的垂直平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每小题3分,共24分)11、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.12、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值.【详解】解:由图象可得:甲的速度为8÷2=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160÷100=1.6米/秒,经过a秒,乙追上甲,可列方程,∴,故答案为:1.【点睛】本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键.13、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得,证得DO⊥HC,根据,即可求得半径,从而求得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥HC,∴四边形AGCH是平行四边形,∴,∵是⊙O的切线,且切点为、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC为等腰三角形,∴,∴,∴,,连接OD、OE,如图,∵是⊙O的切线,且切点为、,∴DO是∠FDE的平分线,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直径为:故答案为:.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键.14、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.【详解】解:把代入,得,解得,所以.故答案是:1.【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.15、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性质即可求出点C坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵轴,∴∠CDA=90°在△ABO与△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,设OA=a()∵B(0,3)∴AD=3,∴点C(a+3,a),∵点C在反比例函数图象上,∴,解得:或(舍去)∴点C(5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.16、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.17、1【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有1°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=1°,故答案为:1.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.18、2﹣【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【详解】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.【点睛】本题考查的是圆的综合,难度系数较高,解题关键是根据正八边形的性质得出每个角的度数.三、解答题(共66分)19、【分析】根据特殊角的三角函数值及绝对值、乘方、零指数次幂的定义进行计算即可.【详解】原式【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.20、(1)点到桌面的距离为;(2)灯罩顶端到桌面的高度约为.【分析】(1)作CM⊥EF于M,BP⊥AD于P,交EF于N,则CM=BN,PN=3,由直角三角形的性质得出AP=AB=14,BP=AP=14,得出CM=BN=BP+PN=14+3即可;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,则∠QBN=90°,CM=BN,PN=3,由(1)得QM=BN,求出∠CBQ=25,由三角函数得出CQ=BC×sin25,得出CM=CQ+QM即可.【详解】解当转动到与桌面平行时,如图2所示:作于于,交于则,即点到桌面的距离为;作于,作于于,交于,如图3所示:则,由得,在中,,即此时灯罩顶端到桌面的高度约为.【点睛】本题考查了解直角三角形、翻折变换的性质、含30角的直角三角形的性质等知识;通过作辅助线构造直角三角形是解题的关键.21、灰太狼秒钟后能抓到懒羊羊【分析】根据已知得出AC=BC,进而利用解直角三角形得出BD的长进一步可得到结果.【详解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m,在Rt△BCD中∴sin60=∴BD=BCsin60=m,设追赶时间为ts,由题意得:5t=∴t=s答:灰太狼秒钟后能抓到懒羊羊.【点睛】此题考查解直角三角形的应用.注意能借助俯角构造直角三角形并解直角三角形是解题的关键,注意数形结合思想的应用.22、(1);(2)点的坐标为时,【分析】(1)根据题目已知条件,可以由顶点坐标及A点坐标先求出二次函数顶点式,进而转化为一般式即可;(2)根据题意,先求出直线AB的解析式,再设出点P和D坐标,进而先得出四边形的面积表达式,即可求得面积最大值.【详解】(1)∵顶点坐标为,∴设抛物线解析式为,∵抛物线与轴交于点,∴,∴,∴,∴;(2)当时,,∴,,∴,,设直线的解析式为,∵,,∴,,∴直线的解析式为.设,∴,∴.∵,∴,∴,∵,∴,∵中,对称轴为,∴当,即点的坐标为时,.【点睛】本题主要考查了二次函数解析式及四边形面积的最值,熟练掌握解析式的求法以及最值的求法是解决本题的关键,在求最值的时候注意将对称轴与自变量的取值范围进行对比,进而判断是在何处取最大值.23、(1)详见解析;(2)150°【分析】(1)先证∠ABD=∠CBE,根据SAS可证△ABD≌△CBE;(2)把线段PC以点C为中心顺时针旋转60°到线段CQ处,连结AQ.根据旋转性质得△PCQ是等边三角形,根据等边三角形性质证△BCP≌△ACQ(SAS),得BP=AQ=4,∠BPC=∠AQC,根据勾股定理逆定理可得∠AQP=90°,进一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°.【详解】(1)证明:∵∠ABC=90°,BD⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD=∠CBE.又∵AB=CB,BD=BE∴△ABD≌△CBE(SAS).(2)如图,把线段PC以点C为中心顺时针旋转60°到线段CQ处,连结AQ.由旋转知识可得:∠PCQ=60°,CP=CQ=1,∴△PCQ是等边三角形,∴CP=CQ=PQ=1.又∵△ABC是等边三角形,∴∠ACB=60°=∠PCQ,BC=AC,∴∠BCP+∠PCA=∠PCA+∠ACQ,即∠BCP=∠ACQ.在△BCP与△ACQ中∴△BCP≌△ACQ(SAS)∴BP=AQ=4,∠BPC=∠AQC.又∵PA=5,∴.∴∠AQP=90°又∵△PCQ是等边三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论