山东省德州市平原中英文实验中学2022年高三第四次模拟考试数学试卷含解析_第1页
山东省德州市平原中英文实验中学2022年高三第四次模拟考试数学试卷含解析_第2页
山东省德州市平原中英文实验中学2022年高三第四次模拟考试数学试卷含解析_第3页
山东省德州市平原中英文实验中学2022年高三第四次模拟考试数学试卷含解析_第4页
山东省德州市平原中英文实验中学2022年高三第四次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.2.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.3.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月4.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.45.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为().A. B.C.或 D.或6.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅7.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.定义,已知函数,,则函数的最小值为()A. B. C. D.9.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,210.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.11.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.812.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,项的系数是__________.14.如图梯形为直角梯形,,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_____________15.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________16.若函数(R,)满足,且的最小值等于,则ω的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.18.(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.(1)若,求直线与轴的交点坐标;(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.20.(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,,求四边形面积的最大值.21.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.82822.(10分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,

该几何体的表面积:.故选C.【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.2.A【解析】

根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.3.C【解析】

根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.4.A【解析】

根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.5.D【解析】

先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可.【详解】构造函数,则由题可知,所以在时为增函数;由为奇函数,为奇函数,所以为偶函数;又,即即又为开口向上的偶函数所以,解得或故选:D【点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.6.B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.7.D【解析】

结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.8.A【解析】

根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.9.C【解析】

先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.10.A【解析】

先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.11.B【解析】

根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.12.D【解析】

通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13.240【解析】

利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.14.【解析】

联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,,,,,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.15.【解析】

利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为.【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题.16.1【解析】

利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的距离为,进而求解即可.【详解】由题,,因为,,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,所以,即,所以,故答案为:1【点睛】本题考查正弦型函数的对称性的应用,考查三角函数的化简.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】

(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.18.(1);(2).【解析】

(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).①当为奇数时,;②当为偶数时,.综上所述,.【点睛】本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.19.(1)(2)见解析【解析】

(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程.代入验证即可.注意分和说明.【详解】解:本题考查直线与椭圆的位置关系的综合,(1)由题知,,则.因为,所以,则直线的方程为,联立,可得故.则,直线的方程为.令,得,故直线与轴的交点坐标为.(2)证明:因为,,所以.设点,则.设当时,设,则,此时直线与轴垂直,其直线方程为,直线的方程为,即.在方程中,令,得,得交点为,显然在椭圆上.同理当时,交点也在椭圆上.当时,可设直线的方程为,即.直线的方程为,联立方程,消去得,化简并解得.将代入中,化简得.所以两直线的交点为.因为,又因为,所以,则,所以点在椭圆上.综上所述,直线与直线的交点在椭圆上.【点睛】本题考查直线与椭圆相交问题,解题方法是解析几何的基本方程,求出直线方程,解方程组求出交点坐标,代入曲线方程验证点在曲线.本题考查了学生的运算求解能力.20.(1)(2)【解析】

(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得:在中,,则,即,,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题.21.(1)190(2)见解析(3)可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【解析】

(1)排序后第10和第11两个数的平均数为中位数;(2)由茎叶图可得列联表;(3)由列联表计算可得结论.【详解】解:(1).(2)抗倒伏易倒伏矮茎154高茎1016(3)由于,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【点睛】本题考查茎叶图,考查独立性检验,正确认识茎叶图是解题关键.22.(1)an=2n+1;(2)2.【解析】

(1)根据题意求出首项,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得该数列为等差数列即可求得通项公式;(2)利用错位相减法进行数列求和.【详解】(1)∵an2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论