版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.35° B.50° C.125° D.90°2.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=().A.-2 B.2 C.-4 D.43.关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.4.抛物线y=x2+kx﹣1与x轴交点的个数为()A.0个 B.1个 C.2个 D.以上都不对5.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上6.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A. B. C. D.7.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A. B. C. D.8.如图,点在以为直径的内,且,以点为圆心,长为半径作弧,得到扇形,且,.若在这个圆面上随意抛飞镖,则飞镖落在扇形内的概率是()A. B. C. D.9.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-1410.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.211.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=012.将抛物线如何平移得到抛物线()A.向左平移2个单位,向上平移3个单位; B.向右平移2个单位,向上平移3个单位;C.向左平移2个单位,向下平移3个单位; D.向右平移2个单位,向下平移3个单位.二、填空题(每题4分,共24分)13.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为__________.14.如图,在菱形ABCD中,∠B=60º,E是CD上一点,将△ADE折叠,折痕为AE,点D的对应点为点D’,AD’与BC交于点F,若F为BC中点,则∠AED=______.15.已知两个相似三角形与的相似比为1.则与的面积之比为________.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.17.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)18.如图,、、所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)三、解答题(共78分)19.(8分)计算:(1)解不等式组(2)化简:20.(8分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,________________.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;(3)观察函数图像,写出两条函数的性质;(4)进一步探究函数图像发现:①方程有______个实数根;②函数图像与直线有_______个交点,所以对应方程有_____个实数根;③关于的方程有个实数根,的取值范围是___________.21.(8分)某校综合实践小组要对一幢建筑物的高度进行测量.如图,该小组在一斜坡坡脚处测得该建筑物顶端的仰角为,沿斜坡向上走到达处,(即)测得该建筑物顶端的仰角为.已知斜坡的坡度,请你计算建筑物的高度(即的长,结果保留根号).22.(10分)如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.(1)求证:直线是⊙的切线;(2)若,求⊙的半径.23.(10分)某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.24.(10分)已知函数,请根据已学知识探究该函数的图象和性质过程如下:(1)该函数自变量的取值范围为;(2)下表列出y与x的几组对应值,请在平面直角坐标系中描出下列各点,并画出函数图象;x…-12…y…321…(3)结合所画函数图象,解决下列问题:①写出该函数图象的一条性质:;②横、纵坐标均为整数的点称为整点,若直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点,则b的取值范围为.25.(12分)如图,在矩形中,,点在直线上,与直线相交所得的锐角为60°.点在直线上,,直线,垂足为点且,以为直径,在的左侧作半圆,点是半圆上任一点.发现:的最小值为_________,的最大值为__________,与直线的位置关系_________.思考:矩形保持不动,半圆沿直线向左平移,当点落在边上时,求半圆与矩形重合部分的周长和面积.
26.一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)
参考答案一、选择题(每题4分,共48分)1、C【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【详解】∵∠B=35°,∠C=90°,∴∠BAC=90°−∠B=90°−35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB1=180°−∠BAC=180°−55°=125°,∴旋转角等于125°.故选:C.【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.2、D【分析】由反比例函数的图象过第一象限可得出,,再由反比例函数系数的几何意义即可得出,,根据的面积为再结合三角形之间的关系即可得出结论.【详解】∵反比例函数及的图象均在第一象限内,
∴,,
∵⊥轴,
∴,,
∴,
解得:.
故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是反比例函数系数k的几何意义得出.3、C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.4、C【分析】设y=0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点.【详解】解:∵抛物线y=x2+kx﹣1,∴当y=0时,则0=x2+kx﹣1,∴△=b2﹣4ac=k2+4>0,∴方程有2个不相等的实数根,∴抛物线y=x2+kx﹣与x轴交点的个数为2个,故选C.5、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【解析】解:当y=0,则,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),=,∴M点坐标为:(2,﹣1).∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:=.故选A.7、C【分析】直接利用概率公式求解即可求得答案.【详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:.故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】如图,连接AO,∠BAC=120,根据等腰三角形的性质得到AO⊥BC,∠BAO=60,解直角三角形得到AB=,由扇形的面积公式得到扇形ABC的面积=,根据概率公式即可得到结论.【详解】如图,连接AO,∠BAC=120,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60,∵BC=2,∴BO=1,∴AB=BO÷cos30°=,∴扇形ABC的面积=,∵⊙O的面积=,∴飞镖落在扇形ABC内的概率是=,故选:C.【点睛】本题考查了几何概率,扇形的面积的计算,等腰三角形的性质,解直角三角形的运用,正确的识别图形是解题的关键.9、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.10、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.11、D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1.12、C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【详解】根据二次函数的平移规律可知,将抛物线向左平移2个单位,再向下平移3个单位即可得到抛物线,故选:C.【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.二、填空题(每题4分,共24分)13、【分析】设定期一年的利率是,则存入一年后的本息和是元,取3000元后余元,再存一年则有方程,解这个方程即可求解.【详解】解:设定期一年的利率是,根据题意得:一年时:,取出3000后剩:,同理两年后是,即方程为,解得:,(不符合题意,故舍去),即年利率是.故答案为:10%.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和本金利率期数),难度一般.14、75º【分析】如图(见解析),连接AC,易证是等边三角形,从而可得,又由可得,再根据折叠的性质得,最后在中利用三角形的内角和定理即可得.【详解】如图,连接AC在菱形ABCD中,是等边三角形F为BC中点(等腰三角形三线合一的性质),即(两直线平行,同旁内角互补)又由折叠的性质得:在中,由三角形的内角和定理得:故答案为:.【点睛】本题是一道较好的综合题,考查了菱形的性质、等边三角形的性质、平行线的性质、图形折叠的性质、三角形的内角和定理,利用三线合一的性质证出是解题关键.15、2【分析】根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的相似比为1,
∴这两个三角形的面积之比为2.
故答案为:2.【点睛】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.16、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.17、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1
时,y1>y2
.故答案为>18、r3<r2<r1【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.三、解答题(共78分)19、(1);(2).【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集;(2)根据分式的减法法则即可得.【详解】(1),解不等式①得:,解不等式②得:,则不等式组的解集为;(2),,,,,.【点睛】本题考查了解一元一次不等式组、分式的减法运算,熟练掌握不等式组的解法和分式的运算法则是解题关键.20、(1)-1;(2)见解析;(1)函数的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①2;②1,1;③-4<a<-1【分析】(1)由题意观察表格根据函数的对称性即可求得m的值;(2)根据题意代入表格数据进行描点、连线即可得到函数的图象;(1)由题意根据题干所给的函数图象性质进行分析即可;(4)①根据函数图象与x轴的交点个数,即可得到结论;②根据的图象与直线y=-1的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围.【详解】解:(1)观察表格根据函数的对称性可得m=-1;(2)如图所示;(1)由函数图象知:①函数的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①函数图象与x轴有2个交点,所以对应的方程有2个实数根;②由函数图象知:的图象与直线y=-1有1个交点,∴方程有1个实数根;③由函数图象知:∵关于x的方程x2-2-1=a有4个实数根,∴a的取值范围是-4<a<-1,故答案为:2,1,1,-4<a<-1.【点睛】本题考查二次函数的图象和性质,运用数形结合思维分析以及正确的识别图象是解题的关键.21、建筑物的高度为.【分析】过点作,根据坡度的定义求出AB,BD,AD,再利用三角函数的定义列出方程求解.【详解】解:过点作,垂足为.过点作,垂足为.∵,∴,∴四边形是矩形,∴,,.∵,∴,∴设,,∴,∴,∴,.根据题意,,,在中,设,∵,∴,∴,∴,在中,∵,.又∵,∴,解得,∴.答:建筑物的高度为.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.22、(1)见解析;(2).【分析】(1)连OC,根据“,AB是⊙O的直径”可得CO⊥AB,进而证明△OEC≌△BEF(SAS)即可得到∠FBE=∠COE=90°,从而证明直线是⊙的切线;(2)由(1)可设⊙O的半径为r,则AB=2r,BF=r,在Rt∆ABF运用沟谷定理即可得.【详解】(1)连OC.∵,AB是⊙O的直径∴CO⊥AB∵E是OB的中点∴OE=BE又∵CE=EF,∠OEC=∠BEF∴△OEC≌△BEF(SAS)∴∠FBE=∠COE=90°即AB⊥BF∴BF是⊙O的切线.(2)由(1)知=90°设⊙O的半径为r,则AB=2r,BF=r在Rt∆ABF中,由勾股定理得;,即,解得:r=∴⊙O的半径为.【点睛】本题考查了切线的证明及圆中的计算问题,熟知切线的证明方法及题中的线段角度之间的关系是解题的关键.23、(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:=,乙的方差是:=.所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.24、(1):x>-2;(2)见详解;(1)①当x>-2时,y随x的增加而减小;②2≤b<1.【分析】(1)x+2>0,即可求解;(2)描点画出函数图象即可;(1)①任意写出一条性质即可,故答案不唯一;②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),即可求解【详解】解:(1)x+2>0,解得:x>-2,故答案为:x>-2;(2)描点画出函数图象如下:(1)①当x>-2时,y随x的增加而减小(答案不唯一),故答案为:当x>-2时,y随x的增加而减小(答案不唯一),②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),故2≤b<1,故答案为:2≤b<1.【点睛】本题考查的是一次函数图象与系数的关系,这种探究性题目,通常按照题设的顺序逐次求解,通常比较容易.25、,10,;,.【分析】发现:先依据勾股定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行保证合同
- 方出资方出力合同范本
- 2024年度吊车租赁及维护合同3篇
- 2024年度软件开发与维护合同标的2篇
- 协议的名词解释
- 洗煤销售合作协议书
- 2024年度融资租赁合同标的为汽车租赁2篇
- 基于2024年度市场的产品代理销售合同
- 年度广告投放合作伙伴协议(04版)
- 2024年度个体工商户供应链合作协议2篇
- 大学生创业英语智慧树知到期末考试答案章节答案2024年广西师范大学
- 输灰双套管安装说明
- 温暖人心的父爱——群文阅读优秀教案
- 最新办公楼物业交接表格资料
- 《危险驾驶罪》PPT课件.ppt
- 2022年2022年普通话语流音变训练
- 钳工教学中钻孔方法的改进探究
- 水轮机结构介绍(经典)
- 高处作业基本知识高处不胜寒安全不能忘
- 管道支架载荷计算
- 防火门安装施工方案
评论
0/150
提交评论