2022年山东省肥城市湖屯镇初级中学数学九年级上册期末考试模拟试题含解析_第1页
2022年山东省肥城市湖屯镇初级中学数学九年级上册期末考试模拟试题含解析_第2页
2022年山东省肥城市湖屯镇初级中学数学九年级上册期末考试模拟试题含解析_第3页
2022年山东省肥城市湖屯镇初级中学数学九年级上册期末考试模拟试题含解析_第4页
2022年山东省肥城市湖屯镇初级中学数学九年级上册期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法正确的是()A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定D.一组数据1,5,3,2,3,4,8的众数和中位数都是32.有一组数据5,3,5,6,7,这组数据的众数为()A.3 B.6 C.5 D.73.反比例函数y=kx(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n等于A.﹣8 B.﹣4 C.﹣18 D.﹣4.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.45.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m6.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°7.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形8.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等9.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:110.如图,在中,,已知,把沿轴负方向向左平移到的位置,此时在同一双曲线上,则的值为()A. B. C. D.11.若,则的值是()A. B. C. D.012.若,则的值等于()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点,分别落在点,处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,依次进行下去,……,若点,,则点B2016的坐标为______.14.如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则______.若点恰好为的中点时,的长为______.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.16.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.17.函数y=中的自变量的取值范围是____________.18.抛物线y=4x2﹣3x与y轴的交点坐标是_____.三、解答题(共78分)19.(8分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:AB2=AE·AD;(2)若AE=2,ED=4,求图中阴影的面积.20.(8分)(1)如图1,在平行四边形ABCD中,点E1,E2是AB三等分点,点F1,F2是CD三等分点,E1F1,E2F2分别交AC于点G1,G2,求证:AG1=G1G2=G2C.(2)如图2,由64个边长为1的小正方形组成的一个网格图,线段MN的两个端点在格点上,请用一把无刻度的尺子,画出线段MN三等分点P,Q.(保留作图痕迹)21.(8分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.22.(10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在轴上找到一点使最大,请直接写出此时点的坐标.24.(10分)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点,取EF中点G,连接DG并延长交AB于点M,延长EF交AC于点N。(1)求证:∠FAB和∠B互余;(2)若N为AC的中点,DE=2BE,MB=3,求AM的长.25.(12分)已知关于的一元二次方程.(1)请判断是否可为此方程的根,说明理由.(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由.26.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP

参考答案一、选择题(每题4分,共48分)1、D【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;故选:D.【点睛】本题考查统计的相关概念,关键在于熟记概念.2、C【分析】根据众数的概念求解.【详解】这组数据中1出现的次数最多,出现了2次,则众数为1.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.3、D【解析】利用反比例函数图象上点的坐标特征得到4n=1×(-4),然后解关于n的方程即可.【详解】∵点(1,-4)和点(4,n)在反比例函数y=kx∴4n=1×(-4),∴n=-1.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k4、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5、B【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】根据同一时刻物高与影长成正比例可得,如图,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故选:B.【点睛】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.解此题的关键是找到各部分以及与其对应的影长.6、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.7、B【分析】试题分析:由tanA=1,sinB=结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【详解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.8、B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.9、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【详解】设原矩形的长为2a,宽为b,

则对折后的矩形的长为b,宽为a,

∵对折后所得的矩形与原矩形相似,

∴,

∴大矩形与小矩形的相似比是:1;

故选A.【点睛】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.10、C【分析】作CN⊥x轴于点N,根据证明,求得点C的坐标;设△ABC沿x轴的负方向平移c个单位,用c表示出和,根据两点都在反比例函数图象上,求出k的值,即可求出反比例函数的解析式.【详解】作CN⊥轴于点N,

∵A(2,0)、B(0,1).

∴AO=2,OB=1,∵,∴,

在和中,∴,∴,

又∵点C在第一象限,

∴C(3,2);设△ABC沿轴的负方向平移c个单位,

则,则,

又点和在该比例函数图象上,

把点和的坐标分别代入,得,

解得:,∴,

故选:C.【点睛】本题是反比例函数与几何的综合题,涉及的知识有:全等三角形的判定与性质,勾股定理,坐标与图形性质,利用待定系数法求函数解析式,平移的性质.11、D【分析】设,则a=2k,b=3k,代入式子化简即可.【详解】解:设,∴a=2k,b=3k,∴==0,故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.12、B【分析】将整理成,即可求解.【详解】解:∵,∴,

故选:B.【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.二、填空题(每题4分,共24分)13、(6048,2)【分析】由题意可得,在直角三角形中,,,根据勾股定理可得,即可求得的周长为10,由此可得的横坐标为10,的横坐标为20,···由此即可求得点的坐标.【详解】在直角三角形中,,,由勾股定理可得:,的周长为:,∴的横坐标为:OA+AB1+B1C1=10,的横坐标为20,···∴.故答案为.【点睛】本题考查了点的坐标的变化规律,根据题意正确得出点的变化规律是解决问题的关键.14、【分析】(1)先根据直径所对的圆周角是直角可求出∠ACB=90°,再根据三角形的内角和定理可求出∠BAC+∠ABC=90°,然后根据角平分线的性质可求出∠DAB+∠DBA=45°,最后利用外角的性质即可求出∠MAD的度数;

(2)如图连接AM,先证明△AME∽△BCE,得到再列代入数值求解即可.【详解】解:(1)∵为直径,∴∠ACB=90°.∴∠BAC+∠ABC=90°∵点是弧的中点,∴∠ABM=∠CBM=∠ABC.∵平分交于点,∴∠BAD=∠CAD=∠BAC.∴∠DAB+∠DBA=∠ABC+∠BAC=45°.∴45°.(2)如图连接AM.

∵AB是直径,

∴∠AMB=90°

∵∠ADM=45°,

∴MA=MD,

∵DM=DB,

∴BM=2AM,设AM=x,则BM=2x,

∵AB=4,

∴x2+4x2=160,

∴x=4(负根已经舍弃),

∴AM=4,BM=8,∵∠MAE=∠CBM,∠CBM=∠ABM.∴∠MAE==∠ABM.∵∠AME=∠AMB=90°,∴△AME∽△BMA.∴∴∴ME=2.故答案为:(1).(2)..【点睛】本题考查圆周角定理,圆心角,弧弦之间的关系,相似三角形的判定和性质,作出辅助线是解题的关键.15、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.16、1【分析】过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.【详解】解:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,∵S△ADE=AD×EG=3,AD=2,∴EG=3,则CF=EG=3,依题意得四边形ABFD为矩形,∴BF=AD=2,∴BC=BF+CF=2+3=1.故答案为1.17、x≠1【分析】根据分母不等于0列式计算即可得解.【详解】根据题意得,x-1≠0,解得:x≠1.故答案为x≠1.18、(0,0)【解析】根据y轴上的点的特点:横坐标为0.可代入求得y=0,因此可得抛物线y=4x2-3x与y轴的交点坐标是(0,0).故答案为(0,0).三、解答题(共78分)19、(1)见解析;(2)2π-3.【解析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD.(2)连结OA,由S阴影=S扇形AOB-S△AOB求出即可.【详解】(1)证明:∵点A是劣弧BC的中点,∴=∴∠ABC=∠ADB.又∵∠BAD=∠EAB,∴△ABE∽△ADB.∴.∴AB2=AE•AD.(2)解:连结OA∵AE=2,ED=4,由(1)可知∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=1.∴AB=(舍负).∵BD为⊙O的直径,∴∠BAD=90°.在Rt△ABD中,BD=∴OB=.∴OA=OB=AB=∴△AOB为等边三角形∴∠AOB=60°.S阴影=S扇形AOB-S△AOB=【点睛】本题考查的知识点是相似三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,解题的关键是熟练的掌握相似三角形的判定与性质,圆周角定理,切线的性质,解直角三角形.20、(1)见解析;(2)见解析【分析】(1)利用平行线分线段成比例定理证明即可.(2)利用(1)中结论,构造平行四边形解决问题即可.【详解】解:(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD∥BC,∵DF1=CD,AE1=AB,∴DF1=AE1,∴四边形ADF1E1是平行四边形,∴AD∥E1F1,∴E1G1∥BC,∴,同法可证:,∴AG1=CG2=AC,∴AG1=G1G2=G2C.(2)如图,点P,Q即为所求.【点睛】本题主要考查了平行四边形的性质,平行线分线段成比例定理,掌握平行四边形的性质,平行线分线段成比例定理是解题的关键.21、AD=1.【解析】根据圆内接四边形的对角互补得出∠C=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.解Rt△AEB,得出BE=AB•cos∠ABE=,AE=,那么AF=AE-EF=.再证明∠ABC+∠ADF=90°,根据互余角的互余函数相等得出sin∠ADF=cos∠ABC=.解Rt△ADF,即可求出AD==1.【详解】解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°-∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE=,∴AF=AE-EF=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD=.【点睛】本题考查了圆内接四边形的性质,矩形的判定与性质,勾股定理,解直角三角形,求出AF=以及sin∠ADF=是解题的关键.22、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高23、(1),;(2)【分析】(1)利用待定系数法由点A坐标可求反比例函数,然后计算出B的坐标,于是可求一次函数的解析式;

(2)根据一次函数与y轴的交点P,此交点即为所求.【详解】解:(1)把代入,可得,反比例函数的解析式为把点代入,可得,.把,代入,可得解得一次函数的解析式为;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,

∴一次函数与y轴的交点为P(0,2),

此时,PB-PC=BC最大,P即为所求.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,正确掌握反比例函数的性质是解题的关键.24、(1)见解析;(2)AM=7【解析】(1)根据等腰三角形三线合一可证得AD⊥BC,根据直角三角形两锐角互余可证得结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得DG=GE即可得∠GDE=∠GED,证明△DBM∽△ECN,根据相似三角形的性质即可求得NC,继而可求AM.【详解】解:(1)∵AB=AC,AD为∠BAC的角平分线,∴A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论