江西省赣州市南康2023学年高三最后一卷数学试卷含解析_第1页
江西省赣州市南康2023学年高三最后一卷数学试卷含解析_第2页
江西省赣州市南康2023学年高三最后一卷数学试卷含解析_第3页
江西省赣州市南康2023学年高三最后一卷数学试卷含解析_第4页
江西省赣州市南康2023学年高三最后一卷数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A. B. C. D.2.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)()A.3.132 B.3.137 C.3.142 D.3.1473.函数的图象大致是()A. B.C. D.4.已知为虚数单位,复数,则其共轭复数()A. B. C. D.5.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.06.已知数列满足,则()A. B. C. D.7.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A. B. C. D.8.设是虚数单位,则()A. B. C. D.9.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.10.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A. B.C. D.11.已知函数,,若对,且,使得,则实数的取值范围是()A. B. C. D.12.已知集合,,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.14.已知中,点是边的中点,的面积为,则线段的取值范围是__________.15.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.16.函数的图象在处的切线方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.18.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.19.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.21.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.22.(10分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.2.B【解析】

结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题3.B【解析】

根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.4.B【解析】

先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.5.C【解析】

集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.6.C【解析】

利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.7.D【解析】

如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,,,.在和中,由余弦定理得,整理解得.故选D.8.A【解析】

利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.9.A【解析】

根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.10.B【解析】

依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.【详解】根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故选B.【点睛】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.11.D【解析】

先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.12.D【解析】

因为,,所以,,故选D.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

直接计算得到答案,根据题意得到,,解得答案.【详解】,故,当时,,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.14.【解析】

设,利用正弦定理,根据,得到①,再利用余弦定理得②,①②平方相加得:,转化为有解问题求解.【详解】设,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,设,在上有解,所以,解得,即,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.15.【解析】

连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,,则,当点的横坐标时,,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.16.【解析】

利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:【点睛】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)由抛物线的定义可得,即可求出,从而得到抛物线方程;(2)设直线的方程为,代入,得.设,,列出韦达定理,表示出中点的坐标,若、、、四点共圆,再结合,得,则即可求出参数,从而得解;【详解】解:(1)由抛物线定义,得,解得,所以抛物线的方程为.(2)设直线的方程为,代入,得.设,,则,.由,,得,所以.因为直线的斜率为,所以直线的斜率为,则直线的方程为.由解得.若、、、四点共圆,再结合,得,则,解得,所以直线的方程为.【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题.18.(1)28种;(2)分布见解析,.【解析】

(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3.,,,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.19.(Ⅰ)详见解析;(Ⅱ)①;②数学期望为6,方差为2.4.【解析】

(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.②由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差.【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,∴选取的3人中至少有2人经常网购的概率为:.②由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,∴从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,∴随机变量的数学期望,方差D(X)=.【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题.20.(1)证明见解析.(2)【解析】

(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB1C1C,∴AC⊥平面BB1C1C,BC⊂平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四边形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论