2022年山东省济宁市田家炳中学九年级数学第一学期期末质量检测模拟试题含解析_第1页
2022年山东省济宁市田家炳中学九年级数学第一学期期末质量检测模拟试题含解析_第2页
2022年山东省济宁市田家炳中学九年级数学第一学期期末质量检测模拟试题含解析_第3页
2022年山东省济宁市田家炳中学九年级数学第一学期期末质量检测模拟试题含解析_第4页
2022年山东省济宁市田家炳中学九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D.22.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为()A.0 B.0或2 C.0或2或﹣2 D.2或﹣23.若函数y=的图象在第一、三象限内,则m的取值范围是()A.m>﹣3 B.m<﹣3 C.m>3 D.m<34.如图,、、、是上的四点,,,则的度数是()A. B. C. D.5.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上 B.点M在⊙C内 C.点M在⊙C外 D.点M不在⊙C内6.若,且,则的值是()A.4 B.2 C.20 D.147.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A.50cm B.50cm C.100cm D.80cm8.已知⊙O的半径为5cm,点P在⊙O上,则OP的长为()A.4cm B.5cm C.8cm D.10cm9.如图,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是()A. B.C. D.10.一元二次方程的根为()A. B. C. D.11.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.12.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.已知,则的值是_____________.14.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为__________.15.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.16.已知反比例函数的图象经过点P(a+1,4),则a=_________________.17.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____18.一支反比例函数,若,则y的取值范围是_____.三、解答题(共78分)19.(8分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.(1)求的值:(2)若,求的长.20.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF,BE.(1)求证:直线CF为⊙O的切线;(2)若DE=6,求⊙O的半径长.21.(8分)如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.22.(10分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.23.(10分)如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC中点C坐标为(0,1).(1)把△ABC绕点C顺时针旋转90°后得到△A1B1C1,画出△A1B1C1,并写出A1坐标.(2)把△ABC以O为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A2B2C2,并写出A2坐标.24.(10分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.25.(12分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.26.已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:;(2)联结AC,如果,求证:.

参考答案一、选择题(每题4分,共48分)1、A【分析】先求出AB,由平行线分线段成比例定理得出比例式,即可得出结果.【详解】∵,

∴,

∵,

∴;

故选:A.【点睛】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.2、C【分析】根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【详解】解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.3、C【分析】根据反比例函数的性质得m﹣1>0,然后解不等式即可.【详解】解:根据题意得m﹣1>0,解得m>1.故选:C.【点睛】本题主要考查的是反比例函数的性质,当k>0时,图像在第一、三象限内,根据这个性质即可解出答案.4、A【分析】根据垂径定理得,结合和圆周角定理,即可得到答案.【详解】∵,∴,∵,∴.故选:A.【点睛】本题主要考查垂径定理和圆周角定理,掌握垂径定理和圆周角定理是解题的关键.5、A【解析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选A.【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.6、A【分析】根据比例的性质得到,结合求得的值,代入求值即可.【详解】解:由a:b=3:4知,所以.所以由得到:,解得.所以.所以.故选A.【点睛】考查了比例的性质,内项之积等于外项之积.若,则.7、A【分析】连接OA作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.【详解】解:如图,过点O作于点C,边接AO,,在中,,,解,得AO=50故选:A【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、B【分析】根据点与圆的位置关系解决问题即可.【详解】解:∵点P在⊙O上,∴OP=r=5cm,故选:B.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.9、B【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】依题意,设金色纸边的宽为,则:

整理得出:.

故选:B.【点睛】本题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.10、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.11、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.12、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.二、填空题(每题4分,共24分)13、【分析】设a=3k,则b=4k,代入计算即可.【详解】设a=3k,则b=4k,∴.故答案为:.【点睛】本题考查了比例的性质.熟练掌握k值法是解答本题的关键.14、1【分析】袋中黑球的个数为,利用概率公式得到,然后利用比例性质求出即可.【详解】解:设袋中黑球的个数为,根据题意得,解得,即袋中黑球的个数为个.故答案为:1.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.15、【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,

∴底面半径为2,

∴V=πr2h=22×6•π=24π,

故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.16、-3【分析】直接将点P(a+1,4)代入求出a即可.【详解】直接将点P(a+1,4)代入,则,解得a=-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.17、【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,

故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.18、y<-1【分析】根据函数解析式可知当x>0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围.【详解】解:∵反比例函数,-4<0,∴当x>0时,y随x的增大而增大,当x=1时,y=-1,∴当,则y的取值范围是y<-1,故答案为:y<-1.【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性.三、解答题(共78分)19、(1);(2)4【分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根据勾股定理即可得出结论.【详解】(1)∵,是斜边的中线,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【点睛】本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键.20、(1)详见解析;(2)3【分析】(1)连接OD,由BC为⊙O的直径,点E为△ABC的内心,证得OD⊥BC,再根据中位线定理证得OD∥CF,即可证得结论;(2)根据圆周角定理证得∠EBD=∠BED,即BD=DE,根据正弦函数即可求出半径的长【详解】(1)连接OD∵BC为⊙O的直径∴∠BAC=90°∵点E为△ABC的内心∴∠CAD=∠BAD=45°,∠ABE=∠EBC∴∠BOD=∠COD=90°,即OD⊥BC又BD=DF,OB=OC∴OD∥CF∴BC⊥CF,BC为⊙O的直径∴直线CF为⊙O的切线;(2)∵,∴∠CAD=∠CBD,∵OD⊥BC,∴,∴∠CBD=∠BAE,又∵∠ABE=∠EBC,∴∠EBD=∠EBC+∠CBD=∠BAE+∠ABE=∠BED,∴BD=DE=6,Rt△OBD中OB=OD,∴OB=BD=×6=3,【点睛】本题考查三角形的内切圆与内心、切线的判定、等腰三角形的判定、直角三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.21、(1)y=-x2+x+2,x=1;(2)C(0,2);y=−x+2;(1)Q1(1,0),Q2(1,2+),Q1(1,2-).【分析】(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=−求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(1)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.【详解】解:(1)∵抛物线y=-x2+bx+2的图象经过点A(-2,0),∴-×(-2)2+b×(-2)+2=0,解得:b=,∴抛物线解析式为y=-x2+x+2,又∵y=-x2+x+2=-(x-1)2+,∴对称轴方程为:x=1.(2)在y=-x2+x+2中,令x=0,得y=2,∴C(0,2);令y=0,即-x2+x+2=0,整理得x2-6x-16=0,解得:x=8或x=-2,∴A(-2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,2)的坐标分别代入解析式,得:,解得,∴直线BC的解析式为:y=−x+2.∵抛物线的对称轴方程为:x=1,可设点Q(1,t),则可求得:AC=,AQ=,CQ=.i)当AQ=CQ时,有=,25+t2=t2-8t+16+9,解得t=0,∴Q1(1,0);ii)当AC=AQ时,有t2=-5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有,整理得:t2-8t+5=0,解得:t=2±,∴点Q坐标为:Q2(1,2+),Q1(1,2-).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(1,0),Q2(1,2+),Q1(1,2-).【点睛】本题考查二次函数综合题,综合性较强,有一定难度,注意分类讨论是本题的解题关键.22、.【分析】用列举法求得所有的等可能结果,然后根据概率公式进行计算.【详解】解:依题意,共有6中等可能结果,分别是(红,黄,蓝),(红,蓝,黄),(黄,红,蓝),(黄,蓝,红),(蓝,红,黄),(蓝,黄,红).所有结果发生的可能性都相等.其中第三次摸出的球是红球(记为事件)的结果有2种,∴.∴第三次摸出的球是红球的概率是.【点睛】本题考查列举法求概率,理解题意列举出所有的等可能结果是本题的解题关键.23、(1)见解析,A1(2,3);(2)见解析,A2(4,-6).【分析】(1)根据旋转变换的定义,将三角形的三个顶点分别顺时针旋转90°后得到对应点,顺次连接即可得;(2)根据位似变换的定义得出点的对应点,顺次连接即可得.【详解】解:(1)如下图所示:即为所求,A1坐标为(2,3);(2)如下图所示:即为所求,A2坐标为(4,−6).【点睛】本题考查了旋转作图及图形位似的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、位似的特点.24、(1);(2)①;②【分析】(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A(0,3),C(4,0),∵抛物线经过A、B两点,∴,解得,,∴抛物线的表达式为:.(2)①∵四边形ABCD是矩形,∴∠B=90O,∴AC2=AB2+BC2=5;由,可得,∴D(2,3).过点/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论