版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.182.如图,抛物线和直线,当时,的取值范围是()A. B.或 C.或 D.3.对于二次函数的图象,下列说法正确的是()A.开口向下 B.对称轴 C.顶点坐标是 D.与轴有两个交点4.下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.5.掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是()A.点数小于4 B.点数大于4 C.点数大于5 D.点数小于56.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=100x B.y=C.y=200x D.y=7.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°8.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30° B.40° C.45° D.50°9.已知函数的图象过点,则该函数的图象必在()A.第二、三象限 B.第二、四象限C.第一、三象限 D.第三、四象限10.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.cm B.cm C.cm D.30cm二、填空题(每小题3分,共24分)11.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是______.12.若=2,则=_____.13.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.14.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.15.如果抛物线经过原点,那么______.16.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.17.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.18.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.三、解答题(共66分)19.(10分)如图,在一块长8、宽6的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.20.(6分)在下列网格图中,每个小正方形的边长均为个单位中,,且三点均在格点上.(1)画出绕顺时针方向旋转后的图形;(2)求点运动路径的长(结果保留).21.(6分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.22.(8分)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.23.(8分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.24.(8分)解方程:(x+2)(x-5)=1.25.(10分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.26.(10分)化简:,并从中取一个合适的整数代入求值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.【详解】∵矩形ABCD的两条对角线交于点O,∴OA=OB=AC,∵∠AOD=10°,∴∠AOB=180°-∠AOD=180°-10°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=1.故选C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键.2、B【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的的取值范围即可.【详解】解:联立,解得,,两函数图象交点坐标为,,由图可知,时的取值范围是或.故选:B.【点睛】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.3、C【分析】根据抛物线的性质由a=2得到图象开口向上,再根据顶点式得到顶点坐标,再根据对称轴为直线x=1和开口方向和顶点,从而可判断抛物线与x轴的公共点个数.【详解】解:二次函数y=2(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.
故选:C.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,其顶点坐标为(h,k),对称轴为x=h.当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.4、C【解析】分析:根据同旁内角的定义进行分析判断即可.详解:A选项中,∠1与∠2是同位角,故此选项不符合题意;B选项中,∠1与∠2是内错角,故此选项不符合题意;C选项中,∠1与∠2是同旁内角,故此选项符合题意;D选项中,∠1与∠2不是同旁内角,故此选项不符合题意.故选C.点睛:熟知“同旁内角的定义:在两直线被第三直线所截形成的8个角中,夹在被截两直线之间,且位于截线的同侧的两个角叫做同旁内角”是解答本题的关键.5、D【解析】根据所有可能的的6种结果中,看哪种情况出现的多,哪种发生的可能性就大.【详解】掷一枚质地均匀的骰子,骰子停止后共有6种等可能的情况,即:点数为1,2,3,4,5,6;其中点数小于4的有3种,点数大于4的有2种,点数大于5的有1种,点数小于5的有4种,故点数小于5的可能性较大,故选:D.【点睛】本题考查了等可能事件发生的概率,理解可能性的大小是关键.6、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k【详解】由题意,设y=kx由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=100x故眼镜度数y与镜片焦距x之间的函数关系式为y=100x故选:A.【点睛】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.7、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】任意掷一枚均匀的硬币,正面朝上是随机事件;从一副扑克牌中,随意抽出一张是大王是随机事件;通常情况下,抛出的篮球会下落是必然事件;三角形内角和为360°是不可能事件,故选C.【点睛】本题考查随机事件.8、A【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选A.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、B【解析】试题分析:对于反比例函数y=,当k>0时,函数图像在一、三象限;当k<0时,函数图像在二、四象限.根据题意可得:k=-2.考点:反比例函数的性质10、A【解析】如下图,在灰色扇形OAB向右无滑动滚动过程中,点O移动的距离等于线段A1B1的长度,而A1B1的长度等于灰色扇形OAB中弧的长度,∵S扇形=,OA=6,∴(cm),即点O移动的距离等于:cm.故选A.点睛:在扇形沿直线无滑动滚动的过程中,由于圆心到圆上各点的距离都等于半径,所以此时圆心作的是平移运动,其平移的距离就等于扇形沿直线滚动的路程.二、填空题(每小题3分,共24分)11、【分析】根据正切的定义即可求解.【详解】解:∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα=,∴,∴t=.故答案为:.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵=1,∴x=1y,∴;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.13、【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是故答案为.点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.14、-1【解析】每次变化时,开口方向变化但形状不变,则a=1,故开口向上时a=1,开口向下时a=-1;与x轴的交点在变化,可发现规律抛物线Cn与x轴交点的规律是(2n-2,0)和(2n,0),由两点式y=a(x-x1)(x-x2)【详解】由抛物线C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),则抛物线C2:y=(x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),则抛物线C3:y=-(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),则抛物线C4:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y=1×(-1)-1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式.15、1【分析】把原点坐标代入中得到关于m的一次方程,然后解一次方程即可.【详解】∵抛物线经过点(0,0),∴−1+m=0,∴m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.16、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【详解】圆锥的侧面积=×6×10=60cm1.故答案为.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.17、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.18、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.三、解答题(共66分)19、花圃四周绿地的宽为1m【分析】设花圃四周绿地的宽为x米,根据矩形花圃的面积=矩形绿地面积的一半列方程求解即可.【详解】解:设花圃四周绿地的宽为xm,由题意,得:(6-2x)(8-2x)=6×8,解方程得:x1=1,x2=6(舍),答:花圃四周绿地的宽为1m.【点睛】本题考查的知识点是一元二次方程的实际应用,根据题意找出题目中的等量关系式是解此题的关键.20、(1)见解析;(2)【解析】(1)利用网格特点和旋转的性质画图;(2)点C的运动路径是弧形,找到半径,圆心角即可求解.【详解】解:如图所示,即为所求;,∴点C的运动路径是以A为圆心,AC长为半径的弧,点的运动路径的长为:【点睛】本题考查了网格中图形的旋转及旋转轨迹,还考查了弧长公式的运算.21、解:(1);(2).【分析】(1)根据题意画出树状图,根据树状图进行解答概率;(2)用列举法求概率.【详解】解:(1)画树状图得∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:P(全是奇数)=(2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,∴这些线段能构成三角形的概率为P(能构成三角形)=【点睛】本题考查概率的计算,难度不大.22、(1)m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m,理由见解析.【解析】试题分析:(1)由于x的方程mx2+(m+2)x+=1有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于m的不等式,解不等式即可求解;(2)不存在符合条件的实数m.设方程mx2+(m+2)x+=1的两根分别为x1、x2,由根与系数关系有:x1+x2=-,x1•x2=,又+=,然后把前面的等式代入其中即可求m,然后利用(1)即可判定结果.试题解析:(1)由,得m>﹣1,又∵m≠1∴m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m.设方程两根为x1,x2则,解得m=﹣2,此时△<1.∴原方程无解,故不存在.23、1【分析】由勾股定理求出AB=1,由旋转的性质得出BE=BC=6,即可得出答案.【详解】∵在△ABC中,∠C=90°,CB=6,CA=8,∴AB==10,由旋转的性质得:BE=BC=6,∴AE=AB﹣BE=10﹣6=1.【点睛】本题考查了旋转的性质以及勾股定理;熟练掌握旋转的性质是解题的关键.24、x1=7,x2=-2【解析】化为一般形式,利用因式分解法求得方程的解即可.【详解】解:(x+2)(x-5)=1,x2-3x-28=0,(x-7)(x+2)=0∴x-7=0,x+2=0解得:x1=7,x2=-2.【点睛】此题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院老人入住接待制度
- 养老院环境卫生与绿化制度
- 《个性设计模板》课件
- 《目标市场定位分析》课件
- 2024年度外聘讲师知识产权保护与收益分配合同3篇
- 2024年生态修复项目育林施工协议模板版B版
- 脑卒中康复治疗方案
- 2024年版:戴悦与周日的特许经营合同
- 2025年莆田货运考试
- 2025年焦作货运资格证模拟考试题
- 2024解读《弘扬教育家精神》全文
- 《税费计算与申报》课件-居民个人平时预扣预缴税额计算
- 美团合作协议书范本(2024版)
- 第21课《小圣施威降大圣》课件 2024-2025学年统编版语文七年级上册
- AQ/T 2061-2018 金属非金属地下矿山防治水安全技术规范(正式版)
- 智能工厂智能工厂绩效评估与指标体系
- 天津市部分区2022-2023学年七年级上学期期末练习生物试题
- 小学三年级-安全知识考试试题-(附答案)-
- 医院门诊医生绩效考核标准及评分细则
- 教师跟岗培训汇报
- 2024车载定位系统技术要求及试验方法 第1部分:卫星定位
评论
0/150
提交评论