下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.2.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.43.已知函数,则函数的图象大致为()A. B.C. D.4.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为()A. B. C. D.5.设、分别是定义在上的奇函数和偶函数,且,则()A. B.0 C.1 D.36.已知直线过圆的圆心,则的最小值为()A.1 B.2 C.3 D.47.已知函数,若函数有三个零点,则实数的取值范围是()A. B. C. D.8.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.9.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.410.设,其中a,b是实数,则()A.1 B.2 C. D.11.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.12.()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是双曲线渐近线上的一点,则双曲线的离心率为_______14.(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是____________.15.根据如图所示的伪代码,输出的值为______.16.抛物线的焦点坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.18.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.19.(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面(2)若,求二面角的余弦值.20.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.21.(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.22.(10分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
根据函数单调性逐项判断即可【题目详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【答案点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.2、D【答案解析】可以是共4个,选D.3、A【答案解析】
用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【题目详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确.故选:A【答案点睛】本题考查了函数图像的性质,属于中档题.4、B【答案解析】
根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【题目详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,,又以为直径的圆经过点,则,即,解得,,所以,,即,即,所以,双曲线的离心率为.故选:B.【答案点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.5、C【答案解析】
先根据奇偶性,求出的解析式,令,即可求出。【题目详解】因为、分别是定义在上的奇函数和偶函数,,用替换,得,化简得,即令,所以,故选C。【答案点睛】本题主要考查函数性质奇偶性的应用。6、D【答案解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【题目详解】圆的圆心为,由题意可得,即,,,则,当且仅当且即时取等号,故选:.【答案点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.7、B【答案解析】
根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【题目详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,,所以是的一个零点,当时,,若,则,即,所以,解得;当时,,则,且若在时有一个零点,则,综上可得,故选:B.【答案点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.8、D【答案解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【答案点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.9、D【答案解析】
根据三视图即可求得几何体表面积,即可解得未知数.【题目详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【答案点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.10、D【答案解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【题目详解】由题可知:,即,所以则故选:D【答案点睛】本题考查复数模的计算,考验计算,属基础题.11、B【答案解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【题目详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【答案点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.12、B【答案解析】
利用复数代数形式的乘除运算化简得答案.【题目详解】.故选B.【答案点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
先表示出渐近线,再代入点,求出,则离心率易求.【题目详解】解:的渐近线是因为在渐近线上,所以,故答案为:【答案点睛】考查双曲线的离心率的求法,是基础题.14、【答案解析】
依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即.15、7【答案解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.【题目详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=10>9,循环结束,输出:i=7.故答案为:7【答案点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.16、【答案解析】
变换得到,计算焦点得到答案.【题目详解】抛物线的标准方程为,,所以焦点坐标为.故答案为:【答案点睛】本题考查了抛物线的焦点坐标,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)存在,长【答案解析】
(1)先证面,又因为面,所以平面平面.(2)根据题意建立空间直角坐标系.列出各点的坐标表示,设,则可得出向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.【题目详解】解:(1)证明:因为四边形为矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.如图所示:则,,,,,设,;∴,,设平面的法向量为,∴,不防设.∴,化简得,解得或;当时,,∴;当时,,∴;综上存在这样的点,线段的长.【答案点睛】本题考查平面与平面垂直的判定定理的应用,考查利用线面所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.18、(1);(2)见解析【答案解析】
(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间.【题目详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增【答案点睛】本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.19、(1)详见解析;(2).【答案解析】
(1)连接,由菱形的性质以及中位线,得,由平面平面,且交线,得平面,故而,最后由线面垂直的判定得结论.(2)以为原点建平面直角坐标系,求出平面平与平面的法向量,,最后求得二面角的余弦值为.【题目详解】解:(1)连结∵,且是的中点,∴∵平面平面,平面平面,∴平面.∵平面,∴又为菱形,且为棱的中点,∴∴.又∵,平面∴平面.(2)由题意有,∵四边形为菱形,且∴分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则设平面的法向量为由,得,令,得取平面的法向量为∴二面角为锐二面角,∴二面角的余弦值为【答案点睛】处理线面垂直问题时,需要学生对线面垂直的判定定理特别熟悉,运用几何语言表示出来方才过关,一定要在已知平面中找两条相交直线与平面外的直线垂直,才可以证得线面垂直,其次考查了学生运用空间向量处理空间中的二面角问题,培养了学生的计算能力和空间想象力.20、(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【答案解析】
试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为,,因为曲线在点处的切线方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店工作总结
- 焦化厂实习报告【9篇】
- 新人教版五年级英语下册单词表-20211108210552
- FM认证监督审核指南
- 领导批示格式范文
- 期刊出版的期刊数字化阅读体验优化考核试卷
- 隧道工程的生态智慧城市建设策略研究考核试卷
- 非木浆在环保型纸箱生产中的强度与成本分析考核试卷
- 高科技智能健身器材与指导服务考核试卷
- 音响设备行业风险管理考核试卷
- API-685-中文_
- 政治经济学结构图解
- LORCH焊机简要操作说明书-v2.1
- 服装品质管理人员工作手册
- 国家开放大学电大专科《兽医基础》2023-2024期末试题及答案试卷编号:2776
- 初三毕业班后期管理措施
- 超星尔雅慕课公共关系礼仪实务杜汉荣课后习题及答案(1)word版本
- 示教机械手控制系统设计
- 氧化铝生产工艺教学(拜耳法)
- 选矿学基础PPT课件
- 安利食品经销商合同协议范本模板
评论
0/150
提交评论