




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有()A. B. C. D.2.复数().A. B. C. D.3.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.34.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.125.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为()A. B. C. D.7.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.8.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.9.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元10.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值11.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A. B. C. D.12.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}二、填空题:本题共4小题,每小题5分,共20分。13.设复数满足,其中是虚数单位,若是的共轭复数,则____________.14.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.15.已知的终边过点,若,则__________.16.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,分别为内角,,的对边,且.(1)证明:;(2)若的面积,,求角.18.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.19.(12分)如图中,为的中点,,,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.20.(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.21.(12分)已知,,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,,的对边分别为,,,且,,求边上的高的最大值.22.(10分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.2、A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.3、C【解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.4、D【解析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.5、B【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.6、D【解析】
根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率.【详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D.【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.7、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.8、B【解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.9、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.10、B【解析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.11、C【解析】
求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.12、C【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由于,则.14、【解析】
先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.15、【解析】
】由题意利用任意角的三角函数的定义,求得的值.【详解】∵的终边过点,若,.即答案为-2.【点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.16、0【解析】
利用等差中项以及等比数列的前项和公式即可求解.【详解】由,,是等差数列可知因为,所以,故答案为:0【点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面积公式列方程,由此求得,进而求得的值,从而求得角.【详解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【点睛】本小题主要考查余弦定理、正弦定理解三角形,考查三角形的面积公式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.18、(1)证明见解析,是,,,,;(2)【解析】
(1)根据是球的直径,则,又平面,得到,再由线面垂直的判定定理得到平面,,进而得到,再利用线面垂直的判定定理得到平面.(2)以A为原点,,,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.【详解】(1)因为是球的直径,则,又平面,∴,.∴平面,∴,∴平面.根据证明可知,四面体是鳖臑.它的每个面的直角分别是,,,.(2)如图,以A为原点,,,所在直线为x,y,z轴建立直角坐标系,则,,,,.M为中点,从而.所以,设,则.由,得.由得,即.所以.设平面的一个法向量为.由.取,,,得到.记与平面所成角为θ,则.所以直线与平面所成的角的正弦值为.【点睛】本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(1)10;(2).【解析】
(1)由题意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,进而解得BC的值.(2)由(1)可知△ADC为直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分线的性质可得,根据S△ABC=S△BCE+S△ACE可求S△BCE的值.【详解】(1)因为在边上,所以,在和中由余弦定理,得,因为,,,,所以,所以,.所以边的长为10.(2)由(1)知为直角三角形,所以,.因为是的角平分线,所以.所以,所以.即的面积为.【点睛】本题主要考查了余弦定理,三角形的面积公式,角平分线的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.20、(1)(2)证明见解析(3)证明见解析【解析】
(1)由题意可得,,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【详解】(1),即,化简可得.令,,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在上,,所以在上单调递减.在上,,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,,,因而在上单调递增.当时,,,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则..设,,当时,.时,,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.21、(1)的最小正周期为:;函数单调递增区间为:;(2).【解析】
(1)根据诱导公式,结合二倍角的正弦公式、辅助角公式把函数的解析式化简成余弦型函数解析式形式,利用余弦型函数的最小正周期公式和单调性进行求解即可;(2)由(1)结合,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西高三联考试卷及答案
- 厦门高一生物试卷及答案
- 2025年赤峰商铺租赁合同范本
- 纸板容器制造工艺改进考核试卷
- 磁性材料研发考核试卷
- 浙江国企招聘2025台州临海工投紫光环保科技有限公司招聘32人笔试参考题库附带答案详解
- 潜水装备的水下环境适应性考核试卷
- 北京考试试题及答案
- 河南成人大专考试试题及答案
- 硅冶炼厂的尾气处理与减排措施考核试卷
- 电子测量仪器的微机电系统技术考核试卷
- 亚洲弦歌-深情 课件 2024-2025学年人音版(简谱)(2024)初中音乐七年级上册
- 2024年云南省昆明市盘龙区小升初英语试卷
- 2024-2030年中国宠物殡葬服务行业市场深度调研及发展战略与投资前景研究报告
- 2024-2030年中国军用掩蔽系统行业市场发展趋势与前景展望战略分析报告
- 2024年山东省淄博市淄川区小中考二模生物试题(解析版)
- 百融云创风险决策引擎V5产品操作手册
- 顺丰控股成本控制现状及问题分析
- 2024年山东省济南市市中区九年级中考二模数学试题 (原卷版+解析版)
- 医疗质量信息数据内部验证制度
- 南宁市永安村发展规划方案
评论
0/150
提交评论