2022年河南师范大附属中学数学九年级上册期末调研模拟试题含解析_第1页
2022年河南师范大附属中学数学九年级上册期末调研模拟试题含解析_第2页
2022年河南师范大附属中学数学九年级上册期末调研模拟试题含解析_第3页
2022年河南师范大附属中学数学九年级上册期末调研模拟试题含解析_第4页
2022年河南师范大附属中学数学九年级上册期末调研模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.2.有一组数据5,3,5,6,7,这组数据的众数为()A.3 B.6 C.5 D.73.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A. B. C. D.4.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c< D.c<15.下列图形中,中心对称图形有()A.4个 B.3个 C.2个 D.1个6.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.7.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为()米.A.6.2 B.10 C.11.2 D.12.48.下列汽车标志中,是中心对称图形的有()个.A.1 B.2 C.3 D.49.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣110.反比例函数y=2A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限二、填空题(每小题3分,共24分)11.抛物线的开口方向是_____.12.若圆锥的母线长为,底面半径为,则圆锥的侧面展开图的圆心角应为_________________度.13.在一个不透明的布袋中装有红色和白色两种颜色的小球(除颜色以外没有任何区别),随机摸出一球,摸到红球的概率是,其中白球6个,则红球有________个.14.已知抛物线经过和两点,则的值为__________.15.在△ABC中,∠C=90°,若tanA=,则sinB=______.16.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.17.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.18.一次函数与反比例函数()的图象如图所示,当时,自变量的取值范围是__________.三、解答题(共66分)19.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?20.(6分)已知抛物线经过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并写出点的坐标;(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;(3)若点在抛物线上,且,试确定满足条件的点的个数.21.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).(1)tan∠DBE=;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.22.(8分)如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积23.(8分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?24.(8分)如图,中,弦与相交于点,,连接.求证:.25.(10分)如图,在四边形中,,,.分别以点,为圆心,大于长为半径作弧,两弧交于点,作直线交于点,交于点.请回答:(1)直线与线段的关系是_______________.(2)若,,求的长.26.(10分)已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE=1::3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF=,求DF和DN的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.2、C【分析】根据众数的概念求解.【详解】这组数据中1出现的次数最多,出现了2次,则众数为1.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.3、C【解析】∵在这5个数中只有0、3.14和6为有理数,∴从这5个数中随机抽取一个数,抽到有理数的概率是.故选C.4、B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则,解得c<﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.5、B【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形.综上所述,是中心对称图形的有3个.故答案选B.【点睛】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.6、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.7、D【分析】先根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度,再加上落在墙上的影长即得答案.【详解】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米,则,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选:D.【点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.8、B【分析】根据中心对称图形的概念逐一进行分析即可得.【详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【点睛】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.9、C【解析】试题解析:关于的一元二次方程没有实数根,,解得:故选C.10、A【解析】试题分析:∵k=2>0,∴反比例函数y=2考点:反比例函数的性质.二、填空题(每小题3分,共24分)11、向上【分析】根据二次项系数的符号即可确定答案.【详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【点睛】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.12、【分析】根据圆锥侧面展开图的弧长等于圆锥底面圆的周长列式计算,弧长公式为,圆周长公式为.【详解】解:圆锥的侧面展开图的圆心角度数为n°,根据题意得,,∴n=144∴圆锥的侧面展开图的圆心角度数为144°.故答案为:144°.【点睛】本题考查圆锥的侧面展开图公式;用到的知识点为,圆锥的侧面展开图的弧长等于圆锥的底面圆周长.记准公式及有空间想象力是解答此题的关键.13、1【分析】设红球有x个,根据题意列出方程,解方程并检验即可.【详解】解:设红球有x个,由题意得:,解得,经检验,是原分式方程的解,所以,红球有1个,故答案为:1.【点睛】本题主要考查根据概率求数量,掌握概率的求法是解题的关键.14、【分析】根据(-2,n)和(1,n)可以确定函数的对称轴x=1,再由对称轴的x=,即可求出b,于是可求n的值.【详解】解:抛物线经过(-2,n)和(1,n)两点,可知函数的对称轴x=1,

∴=1,

∴b=2;

∴y=-x2+2x+1,

将点(-2,n)代入函数解析式,可得n=-1;

故答案是:-1.【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.15、【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.17、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【点睛】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.18、或【分析】即直线位于双曲线下方部分,根据图象即可得到答案.【详解】解:即直线位于双曲线下方部分,根据图象可知此时或.【点睛】本题考查了一次函数和反比例函数的图象和性质,用图解法解不等式.三、解答题(共66分)19、树高为米.【分析】延长交BD延长线于点,根据同一时刻,物体与影长成正比可得,根据AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的长,由BE=BD+DE可求出BE的长,根据求出AB的长即可.【详解】延长和相交于点,则就是树影长的一部分,∵某一时刻测得高为的竹竿影长为,∴,∵AB//CD,∴△AEB∽△CED,∴,∴,∴,∴,∴,∴即树高为米.【点睛】本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键.20、(1);(2)可能,的长为或;(3)当时,满足条件的点的个数有个,当时,满足条件的点的个数有个,当时,满足条件的点的个数有个(此时点在的左侧).【解析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能分三种情形①当时,②当时,③当时,分别求解即可.(3)如图2中,连接,当点在线段的右侧时,作于,连接.设,构建二次函数求出的面积的最大值,再根据对称性即可解决问题.【详解】(1)由题意:解得抛物线的解析式为,顶点坐标.(2)可能.如图1,①当时,,此时与重合,与条件矛盾,不成立.②当时,又,,③当时,,,答:当的长为或时,为等腰三角形.(3)如图2中,连接,当点在线段的右侧时,作于,连接.设则时,的面积的最大值为,当点在的右侧时,的最大值,观察图象可知:当时,满足条件的点的个数有个,当时,满足条件的点的个数有个,当时,满足条件的点的个数有个(此时点在的左侧).【点睛】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.21、(1);(1)t=;(3)见解析;(4)t的值为或或或1.【分析】(1)如图1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解决问题.(1)如图1中,由PF∥CB,可得,由此构建方程即可解决问题.(3)分三种情形:如图3-1中,当时,重叠部分是平行四边形PBQF.如图3-1中,当时,重叠部分是五边形PBQRT.如图3-3中,当1<t≤1时,重叠部分是四边形PBCT,分别求解即可解决问题.

(4)分四种情形:如图4-1中,当MN∥AB时,设CM交BF于T.如图4-1中,当MN⊥BC时.如图4-3中,当MN⊥AB时.当点P与点D重合时,MN∥BC,分别求解即可.【详解】解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE===.故答案为.(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM==,∴CM=,BM=DM=1,∵PF∥CB,∴=,∴=,解得t=.(3)如图3﹣1中,当0<t≤时,重叠部分是平行四边形PBQF,S=PB•PQ=1t•t=10t1.如图3﹣1中,当<t≤1时,重叠部分是五边形PBQRT,S=S平行四边形PBQF﹣S△TRF=10t1﹣•[1t﹣(5﹣5t)]•[1t﹣(5﹣5t)]=﹣55t1+(10+50)t﹣15.如图3﹣3中,当1<t≤1时,重叠部分是四边形PBCT,S=S△BCD﹣S△PDT=×5×4﹣•(5﹣t)•(4﹣1t)=﹣t1+10t.(4)如图4﹣1中,当MN∥AB时,设CM交BF于T.∵PN∥MT,∴=,∴=,∴MT=,∵MN∥AB,∴===1,∴PB=BM,∴1t=×1,∴t=.如图4﹣1中,当MN⊥BC时,易知点F落在DH时,∵PF∥BH,∴=,∴=,解得t=.如图4﹣3中,当MN⊥AB时,易知∠PNM=∠ABD,可得tan∠PNM==,∴=,解得t=,当点P与点D重合时,MN∥BC,此时t=1,综上所述,满足条件的t的值为或或或1.【点睛】本题属于四边形综合题,考查了菱形的性质,平行四边形的性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.22、(1)见解析;(2)18.【分析】(1)根据平行四边形的性质可得∠A=∠C,AB∥DC,然后根据平行线的性质可得∠ABF=∠CEB,最后根据相似三角形的判定定理可得△ABF∽△CEB;(2)根据已知条件即可得出DE=EC,利用平行四边形的性质和相似三角形的判定可得△DEF∽△CEB,最后根据相似三角形的性质即可求出△CEB的面积.【详解】解:(1)∵四边形ABCD是平行四边形∴∠A=∠C,AB∥DC∴∠ABF=∠CEB∴△ABF∽△CEB;(2)∵DE=CD∴DE=EC∵四边形ABCD是平行四边形∴AD∥BC∴△DEF∽△CEB∴∵△DEF的面积为2∴S△CEB=18【点睛】此题考查的是平行四边形的性质和相似三角形的判定及性质,掌握平行四边形的性质定理和相似三角形的判定定理及性质定理是解决此题的关键.23、(1);(2);(3)当或时,满足条件的点只有一个.【解析】(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.(3)由圆周角定理可得是顶角为120°的等腰三角形,再分情况讨论:①当与相切时,结合题意画出图形,过点作,并延长与交于点,连结,,设半径为,由相似三角形的判定和性质即可求得长;②当经过点时,结合题意画出图形,过点作,设半径为,在中,根据勾股定理求得,再由相似三角形的判定和性质即可求得长;③当经过点时,结合题意画出图形,此时点与点重合,且恰好在点处,由此可得长.【详解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,过,,作外接圆,圆心为,∴是顶角为120°的等腰三角形.①当与相切时,如图1,过点作,并延长与交于点,连结,设的半径则,,解得.∴,.易知,可得,则∴.②当经过点时,如图2,过点作,垂足为.设的半径,则.在中,,解得,∴易知,可得③当经过点时,如图3,此时点与点重合,且恰好在点处,可得.综上所述,当或时,满足条件的点只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.24、见解析【分析】由AB=CD知,得到,再由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】解:,,即,;,在△ADE和△CBE中,,∴△ADE≌△CBE(ASA),.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.25、(1)AE垂直平分BD;(2)【分析】(1)根据基本作图,可得AE垂直平分BD;(2)连接FB,由垂直平分线的性质得出FD=FB.再根据AAS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论