2023学年内蒙古乌兰察布市重点中学高三第二次诊断性检测数学试卷(含解析)_第1页
2023学年内蒙古乌兰察布市重点中学高三第二次诊断性检测数学试卷(含解析)_第2页
2023学年内蒙古乌兰察布市重点中学高三第二次诊断性检测数学试卷(含解析)_第3页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为A. B. C. D.2.已知平面,,直线满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件3.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.4.已知是虚数单位,则复数()A. B. C.2 D.5.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.46.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.已知函数,存在实数,使得,则的最大值为()A. B. C. D.8.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.9.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.10.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.11.中,角的对边分别为,若,,,则的面积为()A. B. C. D.12.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、二、填空题:本题共4小题,每小题5分,共20分。13.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.14.一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则容器体积的最小值为_________.15.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.16.某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.18.(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,,19.(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.20.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.21.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.22.(10分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】

由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.2、A【答案解析】

,是相交平面,直线平面,则“”“”,反之,直线满足,则或//或平面,即可判断出结论.【题目详解】解:已知直线平面,则“”“”,反之,直线满足,则或//或平面,“”是“”的充分不必要条件.故选:A.【答案点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.3、D【答案解析】

先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.【答案点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.4、A【答案解析】

根据复数的基本运算求解即可.【题目详解】.故选:A【答案点睛】本题主要考查了复数的基本运算,属于基础题.5、D【答案解析】

根据三视图即可求得几何体表面积,即可解得未知数.【题目详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【答案点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.6、C【答案解析】

根据并集的求法直接求出结果.【题目详解】∵,∴,故选C.【答案点睛】考查并集的求法,属于基础题.7、A【答案解析】

画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【题目详解】由于,,由于,令,,在↗,↘故.故选:A【答案点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.8、B【答案解析】

首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【题目详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【答案点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.9、D【答案解析】双曲线的渐近线方程是,所以,即,,即,,故选D.10、D【答案解析】

连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【题目详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【答案点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.11、A【答案解析】

先求出,由正弦定理求得,然后由面积公式计算.【题目详解】由题意,.由得,.故选:A.【答案点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.12、A【答案解析】

设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【题目详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【答案点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【题目详解】分三步来考查:①从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;②从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;③从到,由①可知有种走法.由分步乘法计数原理可知,共有种不同的走法.故答案为:.【答案点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.14、【答案解析】

一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则圆柱形容器的底面直径及高的最小值均等于长方体的体对角线的长,长方体的体对角线的长为,所以容器体积的最小值为.15、【答案解析】

求函数的导数,利用导数的几何意义即可求出切线方程.【题目详解】解:∵,

∴,

则,

又,即切点坐标为(1,0),

则函数在点(1,f(1))处的切线方程为,

即,

故答案为:.【答案点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.16、60【答案解析】

根据样本容量及各组人数比,可求得C组中的人数;由组中甲、乙二人均被抽到的概率是可求得C组的总人数,即可由各组人数比求得总人数.【题目详解】三组人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则三组抽取人数分别.设组有人,则组中甲、乙二人均被抽到的概率,∴解得.∴该部门员工总共有人.故答案为:60.【答案点睛】本题考查了分层抽样的定义与简单应用,古典概型概率的简单应用,由各层人数求总人数的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;【答案解析】

(1)推导出,由是的中点,能证明是有中点.(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.【题目详解】证明:(1)在三棱锥中,平面,平面平面,平面,,在中,是的中点,是有中点.(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【答案点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.18、(1)(2)详见解析【答案解析】

由题意,根据平均数公式求得,再根据,参照数据求解.由题意得,获赠话费的可能取值为,求得相应的概率,列出分布列求期望.【题目详解】由题意得综上,由题意得,获赠话费的可能取值为,,的分布列为:【答案点睛】本题主要考查正态分布和离散型随机变量的分布列及期望,还考查了运算求解的能力,属于中档题.19、(1)直线普通方程:,曲线直角坐标方程:;(2).【答案解析】

(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.【题目详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【答案点睛】本题考查极坐标与直角坐标的互化、参数方程与普通方程的互化、直线参数方程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解.20、(1)见解析;(2).【答案解析】

(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【题目详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面,则②,由①②知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,,,,所以,,,设,,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,,则平面,从而M到平面的距离,所以.【答案点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.21、(Ⅰ);(Ⅱ)详见解析.【答案解析】

(Ⅰ)由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;(Ⅱ)设直线,直线,,,,.把直线与直线的方程分别代入椭圆的方程,利用韦达定理和弦长公式求出和,根据求出的值.最后直线与直线的方程联立,求两直线的交点即得结论.【题目详解】(Ⅰ)设的周长为,则,当且仅当线段过点时“”成立.,,又,,椭圆的标准方程为.(Ⅱ)若直线的斜率不存在,则直线的斜率也不存在,这与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论