2022-2023学年湖南省长沙市明德旗舰数学九年级上册期末经典试题含解析_第1页
2022-2023学年湖南省长沙市明德旗舰数学九年级上册期末经典试题含解析_第2页
2022-2023学年湖南省长沙市明德旗舰数学九年级上册期末经典试题含解析_第3页
2022-2023学年湖南省长沙市明德旗舰数学九年级上册期末经典试题含解析_第4页
2022-2023学年湖南省长沙市明德旗舰数学九年级上册期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知反比例函数的图象经过点(1,2),则k的值为()A.0.5 B.1 C.2 D.42.下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视,正在播放广告C.任意购买一张电影票,座位号恰好是“排号”D.一个袋中只装有个黑球,从中摸出一个球是黑球3.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45° B.15° C.10° D.125°4.已知,是一元二次方程的两个实数根,下列结论错误的是()A. B. C. D.5.下列交通标志中,是中心对称图形的是()A. B. C. D.6.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. B.C. D.7.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.8.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.49.两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是()A.是表示甲离地的距离与时间关系的图象B.乙的速度是C.两人相遇时间在D.当甲到达终点时乙距离终点还有10.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.9二、填空题(每小题3分,共24分)11.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.12.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.13.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、….当AB=1时,l3=________,l2019=_________.14.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.15.把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_________.16.如图:点是圆外任意一点,连接、,则______(填“>”、“<”或“=”)17.某学生想把放置在水平桌面上的一块三角板(,),绕点按顺时针方向旋转角,转到的位置,其中、分别是、的对应点,在上(如图所示),则角的度数为______.18.某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y(件)与每件的销售价格x(元/件)之间满足一次函数.在商品不积压且不考虑其他因素的条件下,销售价格定为______元时,才能使每月的毛利润w最大,每月的最大毛利润是为_______元.三、解答题(共66分)19.(10分)如图,在中,.以为直径的与交于点,与交于点,点在边的延长线上,且.(1)试说明是的切线;(2)过点作,垂足为.若,,求的半径;(3)连接,设的面积为,的面积为,若,,求的长.20.(6分)将如图所示的牌面数字1、2、3、4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是奇数的概率是;(2)从中随机抽出两张牌,两张牌牌面数字的和是6的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是3的倍的概率.21.(6分)已知关于x的一元二次方程x2-2x+m-1=1.(1)若此方程有两个不相等的实数根,求实数m的取值范围;(2)当Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.22.(8分)(1)解方程:x2﹣4x﹣3=0(2)计算:23.(8分)已知反比例函数的图象与一次函数的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(-1,5)关于x轴的对称点P'是否在一次函数图象上.24.(8分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.25.(10分)综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将绕点逆时针旋转,得到,连接,求出的度数.思路二:将绕点顺时针旋转,得到,连接,求出的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点是正方形外一点,,,,求的度数.拓展应用(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.26.(10分)端午节放假期间,小明和小华准备到巴马的水晶宫(记为A)、百魔洞(记为B)、百鸟岩(记为C)、长寿村(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)求小明选择去百魔洞旅游的概率.(2)用树状图或列表的方法求小明和小华都选择去长寿村旅游的概率.

参考答案一、选择题(每小题3分,共30分)1、C【解析】将(1,1)代入解析式中即可.【详解】解:将点(1,1)代入解析式得,,k=1.故选:C.【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.2、D【分析】根据必然事件的概念对各选项分析判断即可.【详解】解:A、购买一张彩票,有可能中奖,也有可能不中奖,是随机事件,故A不合题意;B、打开电视,可能正在播放广告,也可能在播放其他节目,是随机事件,故B不合题意;C、购买电影票时,可能恰好是“7排8号”,也可能是其他位置,是随机事件,故C不合题意;D、从只装有5个黑球的袋子中摸出一个球,摸出的肯定是黑球,是必然事件,故D符合题意;故选D.【点睛】本题主要考查确定事件;在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫做必然发生的事件,简称必然事件.3、A【分析】由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.【详解】是等边三角形,,,四边形是正方形,,,,,,.

故选:.【点睛】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.4、C【分析】由题意根据解一元二次方程的概念和根与系数的关系对选项逐次判断即可.【详解】解:∵△=22-4×1×0=4>0,∴,选项A不符合题意;∵是一元二次方程的实数根,∴,选项B不符合题意;∵,是一元二次方程的两个实数根,∴,,选项D不符合题意,选项C符合题意.故选:C.【点睛】本题考查解一元二次方程和根与系数的关系,能熟记根与系数的关系的内容是解此题的关键.5、D【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【解析】第一个月是560,第二个月是560(1+x),第三月是560(1+x)2,所以第一季度总计560+560(1+x)+560(1+x)2=1850,选D.7、D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用8、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..9、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可.【详解】解:A.是表示甲离地的距离与时间关系的图象是正确的;B.乙用时3小时,乙的速度,90÷3=,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有:解得:∴甲对应的函数解析式为y=-45x+90,设乙对应的函数解析式为y=cx+d,则有:解得:即乙对应的函数解析式为y=30x-15则有:解得:x=1.4h,故C选项错误;D.当甲到达终点时乙距离终点还有90-40×1.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.10、B【分析】根据二次函数的定义来求解,注意二次项的系数与次数.【详解】根据二次函数的定义,可知

m2-7=2

,且

3-m≠0

,解得

m=-3

,所以选择B.故答案为B【点睛】本题考查了二次函数的定义,注意二次项的系数不能为0.二、填空题(每小题3分,共24分)11、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.12、【解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.13、π673π【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2019的长.【详解】解:根据题意得:l1=,l2=,l3=,则l2019=.故答案为:π;673π.【点睛】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长.14、10%【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.【详解】解:设平均每次降价的百分率是x,根据题意得:60(1-x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15、【分析】两块三角板的边与的交点所走过的路程,需分类讨论,由图①的点运动到图②的点,由图②的点运动到图③的点,总路程为,分别求解即可.【详解】如图,两块三角板的边与的交点所走过的路程,分两步走:(1)由图①的点运动到图②的点,此时:AC⊥DE,点C到直线DE的距离最短,所以CF最短,则PF最长,根据题意,,,在中,∴;(2)由图②的点运动到图③的点,过G作GH⊥DC于H,如下图,∵,且GH⊥DC,∴是等腰直角三角形,∴,设,则,∴,∴,解得:,即,点所走过的路程:,故答案为:【点睛】本题是一道需要把旋转角的概念和解直角三角形相结合求解的综合题,考查学生综合运用数学知识的能力.正确确定点所走过的路程是解答本题的关键.16、<【分析】设BP与圆交于点D,连接AD,根据同弧所对的圆周角相等,可得∠ACB=∠ADB,然后根据三角形外角的性质即可判断.【详解】解:设BP与圆交于点D,连接AD∴∠ACB=∠ADB∵∠ADB是△APD的外角∴∠ADB>∴<∠ACB故答案为:<.【点睛】此题考查的是圆周角定理的推论和三角形外角的性质,掌握同弧所对的圆周角相等和三角形的外角大于任何一个与它不相邻的内角是解决此题的关键.17、60°【分析】根据题意有∠ACB=90,∠A=30,进而可得∠ABC=60,又有∠ACA′=BCB′=∠ABA′=,可得∠CBB′=(180−),代入数据可得答案.【详解】∵∠ACB=90,∠A=30,∴∠ABC=60,∴∠ACA′=BCB′=∠ABA′=,∠CBB′=(180−),∴=∠ABC=60.故答案为:60.【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点是旋转中心;②旋转方向;③旋转角度.18、241【分析】本题首先通过待定系数法求解y与x的关系式,继而根据利润公式求解二次函数表达式,最后根据二次函数性质求解本题.【详解】由题意假设,将,代入一次函数可得:,求解上述方程组得:,则,∵,∴,∴,又因为商品进价为16元,故.销售利润,整理上式可得:销售利润,由二次函数性质可得:当时,取最大值为1.故当销售单价为24时,每月最大毛利润为1元.【点睛】本题考查二次函数的利润问题,解题关键在于理清题意,按照题目要求,求解二次函数表达式,最后根据二次函数性质求解此类型题目.三、解答题(共66分)19、(1)详见解析;(2)3;(3).【分析】(1)根据切线的判断方法证明即可求解;(2)根据即可求出AB即可求解;(3)连接.求出为中点,得到,根据,设,,得到,,求出得到,,再根据勾股定理即可求解.【详解】(1)证明:连接.∵为直径,∴.又∵,∴,∵,∴.∵,∴,即.又∵是直径,∴与相切.(2)解:∵,∴,又∵,,∴,∴,∴.∵,,∴,∴.∵,∴,∴的半径是3.(3)解:连接.∵为直径,∴.∵,,∴为中点,∴.又∵,设,,∴,,∴,∴.又∵,∴,.∵在中,,∴在中,.【点睛】此题主要考查圆的切线综合,解题的关键是熟知三角函数的性质、切线的判定、勾股定理的应用.20、(1);(2);(3),.【分析】(1)根据概率的意义直接计算即可解答.

(2)找出两张牌牌面数字的和是6的情况再与所有情况相比即可解答.

(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【详解】解:(1)1,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)只有2+4=6,但组合一共有3+2+1=6,故概率为;(3)列表如下:第二次第一次1234111121314221222324331323334441424344其中恰好是3的倍数的有12,21,24,33,42五种结果.所以,P(3的倍数)=.故答案为:,.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)m<2;(2)【分析】(1)根据方程有两个不相等的实数根即可得到判别式大于1,由此得到答案;(2)根据根与系数的关系式及完全平方公式变形求出ab,再利用三角形的面积公式即可得到答案.【详解】(1)关于x的一元二次方程x2-2x+m-1=1有两个不相等的实数根,∴△>1,即△=4-4(m-1)>1,解得m<2;(2)∵Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根,∴a+b=2,a2+b2=()2=3,∴(a+b)2-2ab=3,∴4-2ab=3,∴ab=,∴Rt△ABC的面积=ab=.【点睛】此题考查一元二次方程的根的判别式,根与系数的关系式,直角三角形的勾股定理,完全平方式的变形,直角三角形面积的求法.22、(1)x1=2+,x2=2﹣;(2)1【分析】(1)方程利用配方法求出解即可;(2)原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【详解】(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=3+4,即(x﹣2)2=7,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)=1.【点睛】本题考查了利用配方法求一元二次方程的解以及实数的混合运算,涉及了:零指数、二次根式以及特殊角的三角函数值.解题的关键是熟练运用一元二次方程的解法以及特殊角的锐角三角函数的值.23、(1),;(1)P'在一次函数图象上.【分析】(1)把点的坐标代入反比例函数和一次函数的一般式即可求出函数解析式.

(1)首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,求出点P(-1,5)关于x轴的对称点P′的坐标,再代入一次函数解析式,看看是否满足解析式,满足则在一次函数y=kx+m的图象上,反之则不在.【详解】解:(1)∵经过点(1,1),∴k=1.∵一次函数的图象经过(1,1),∴1=1×1+m∴m=-3,∴反比例函数解析式为,一次函数解析式为.(1)∵P(-1,5)关于x轴的对称点P'坐标为(-1,-5),∴把x=-1代入,得:y=-5,∴P'在一次函数图象上.【点睛】此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,关键是把握住凡是图象经过的点都能满足解析式.24、(1)详见解析;(2)详见解析;(3)4【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出∽,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出∽,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:平分,∽∴BD是四边形的“相似对角线”.(3)是四边形的“相似对角线”,三角形与三角形相似.又∽过点作垂足为则【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论