版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B.3 C. D.22.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A. B. C. D.3.如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y1<y3<y24.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是()A.1月,2月 B.1月,2月,3月 C.3月,12月 D.1月,2月,3月,12月5.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=26.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()A.56° B.55°C.35° D.34°8.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B. C. D.9.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.10.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.11.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11或1 D.12或112.二次函数y=3(x+4)2﹣5的图象的顶点坐标为()A.(4,5) B.(﹣4,5) C.(4,﹣5) D.(﹣4,﹣5)二、填空题(每题4分,共24分)13.在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.14.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.15.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.16.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.17.形状与抛物线相同,对称轴是直线,且过点的抛物线的解析式是________.18.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_______.三、解答题(共78分)19.(8分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?20.(8分)综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.21.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.22.(10分)如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是90°的扇形ABC.(1)求剪出的扇形ABC的周长.(2)求被剪掉的阴影部分的面积.23.(10分)解下列方程:(1)(2)24.(10分)若方程(m-2)+(3-m)x-2=0是关于x的一元二次方程,试求代数式m2+2m-4的值.25.(12分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)26.(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是.
①;②线段AB绕C点旋转180°后,得到线段A'B';③;④C是线段BB'的中点.在第(1)问的启发下解答下面问题:(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.
参考答案一、选择题(每题4分,共48分)1、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.2、A【分析】直接利用已知数据可得xy=100,进而得出答案.【详解】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:.故选A.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.3、A【分析】先根据k<0可判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【详解】∵双曲线y=上(k<0),∴函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.∵−5<−<0,0<,∴点A(−5,y1),B(−,y1)在第二象限,点C(,y3)在第四象限,∴y3<y1<y1.故选:A.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4、D【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D5、D【解析】试题分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.考点:解一元二次方程-因式分解法.6、B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.7、D【分析】利用直径所对的圆周角是可求得的度数,根据同弧所对的的圆周角相等可得∠C的度数.【详解】解:AB为⊙O的直径,点D为⊙O上的一个点故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.8、B【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.9、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.10、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.11、A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【点睛】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.12、D【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D.【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式的顶点坐标为(h,k).二、填空题(每题4分,共24分)13、【分析】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足条件,从而求算概率.【详解】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足:一共有:,,、,、,三种情况,满足条件的有,、,两种,∴能够让灯泡发光的概率为:故答案为:.【点睛】本题考查概率运算,分析出所有可能的结果,寻找出满足条件的情况是解题关键.14、【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.15、46°【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠DCB=80°∴∠BDC=180°-∠DBC-∠DCB=46°∴∠BOC=2∠BDC=92°又∵OB=OC∴∠OBC=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.16、(-1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45°,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理可得,由旋转的性质得:将正方形OABC绕点O逆时针依次旋转45°,得:,∴,,,,…,可发现8次一循环,∵,∴点的坐标为,故答案为.【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键.17、或.【分析】先从已知入手:由与抛物线形状相同则相同,且经过点,即把代入得,再根据对称轴为可求出,即可写出二次函数的解析式.【详解】解:设所求的二次函数的解析式为:,与抛物线形状相同,,,又∵图象过点,∴,∵对称轴是直线,∴,∴当时,,当时,,所求的二次函数的解析式为:或.【点睛】本题考查了利用待定系数法求二次函数的解析式和二次函数的系数和图象之间的关系.解答时注意抛物线形状相同时要分两种情况:①开口向下,②开口向上;即相等.18、1【分析】根据矩形的性质得到BD=AC,所以求BD的最小值就是求AC的最小值,当点A在抛物线顶点的时候AC是最小的.【详解】解:∵,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为:1.【点睛】本题考查矩形的性质和二次函数图象的性质,解题的关键是通过矩形的性质将要求的BD转化成可以求最小值的AC.三、解答题(共78分)19、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).20、(1);(1)△ABC是直角三角形,理由见解析;(3),;(4)存在,F1,F1.【分析】(1)由对称性先求出点B的坐标,可设抛物线的解析式为y=a(x+3)(x﹣1),将C坐标代入y=a(x+3)(x﹣1)即可;(1)先判断△ABC为直角三角形,分别求出AB,AC,BC的长,由勾股定理的逆定理可证明结论;(3)因为点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,所以BM=BN=t,证四边形PMBN是菱形,设PM与y轴交于H,证△CPN∽△CAB,由相似三角形的性质可求出t的值,CH的长,可得出点P纵坐标,求出直线AC的解析式,将点P纵坐标代入即可;(4)求出直线BC的解析式,如图1,当∠ACF=90°时,点B,C,F在一条直线上,求出直线BC与对称轴的交点即可;当∠CAF=90°时,求出直线AF的解析式,再求其与对称轴的交点即可.【详解】(1)∵在抛物线y=ax1+bx+c中,当x=﹣4和x=1时,二次函数y=ax1+bx+c的函数值y相等,∴抛物线的对称轴为x1,又∵抛物线y=ax1+bx+c与x轴交于A(﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x﹣1),将C(0,)代入y=a(x+3)(x﹣1),得:﹣3a,解得:a,∴此抛物线的解析式为y(x+3)(x﹣1)x1x;(1)△ABC为直角三角形.理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC,∴AB=OA+OB=4,AC1,BC1.∵AC1+BC1=16,AB1=16,∴AC1+BC1=AB1,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴,即,解得:t,CH,∴OH=OC﹣CH,∴yP,设直线AC的解析式为y=kx,将点A(﹣3,0)代入y=kx,得:k,∴直线AC的解析式为yx,将yP代入yx,∴x=﹣1,∴P(﹣1,).故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx,将点B(1,0)代入y=kx,得:k,∴直线BC的解析式为yx,由(1)知△ABC为直角三角形,∠ACB=90°.①如图1,当∠ACF=90°时,点B,C,F在一条直线上,在yx中,当x=﹣1时,y=1,∴F1(﹣1,1);②当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为yx+n,将点A(﹣3,0)代入yx+n,得:n=﹣3,∴直线AF的解析式为yx﹣3,在yx﹣3中,当x=﹣1时,y=﹣1,∴F1(﹣1,﹣1).综上所述:点F的坐标为F1(﹣1,1),F1(﹣1,﹣1).【点睛】本题是二次函数综合题.考查了待定系数法求解析式,勾股定理,相似三角形的判定与性质,直角三角形的性质等,解答本题的关键是注意分类讨论思想在解题过程中的运用.21、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.22、(1)(10+5)cm;(1)50πcm1.【分析】(1)连接BC,首先证明BC是直径,求出AB,AC,利用弧长公式求出弧BC的长即可解决问题.(1)根据S阴=S圆O﹣S扇形ABC计算即可解决问题.【详解】解:(1)如图,连接BC∵∠BAC=90°,∴BC是⊙O的直径,∴BC=10cm,∵AB=AC,∴AB=AC=10,∴的长==5π,∴扇形ABC的周长=(10+5)cm.(1)S阴=S圆O﹣S扇形ABC=π•101﹣=50πcm1.【点睛】本题考查了弧长计算和不规则图形的面积计算,熟练掌握弧长公式与扇形面积公式是解题的关键.23、【分析】(1)利用配方法得到(x﹣1)2=3,然后利用直接开平方法解方程;(2)先变形得到(2x﹣1)2﹣2(2x﹣1)=0,然后利用因式分解法解方程.【详解】解:(1)x2﹣2x+1=3,(x﹣1)2=3,x﹣1=±,所以,(2)(2x﹣1)2﹣2(2x﹣1)=0,(2x﹣1)(2x﹣1﹣2)=0,2x﹣1=0或2x﹣1﹣2=0,所以x1=,x2=.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.24、-4【分析】根据一元二次方程的定义列式求出m的值,然后代入代数式进行计算即可得解.【详解】解:根据题意,得m2-2=2且m-2≠0,解得m=±2且m≠2,所以m=-2,m2+2m-4=(-2)2+2×(-2)-4=4-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年销售经理工作计划模板
- 2025年财务部工作计划 财务科2025年工作计划
- 2025年医院年度工作计划 医院年度工作计划
- Unit 3 第3课时 Section B (1a-2b)2024-2025学年新教材七年级英语上册同步说课稿(人教版2024)河北专版
- 行政总监的工作职责范文15篇
- 2025年小学四年级上册数学教学计划
- 2025年度七年级班主任工作计划
- 2025年第一学期卫生工作计划
- 2025年财务科人员工作计划
- Unit6 In a nature park Part A(说课稿)-2024-2025学年人教PEP版英语五年级上册
- (八省联考)河南省2025年高考综合改革适应性演练 思想政治试卷(含答案)
- 综合测试 散文阅读(多文本)(解析版)-2025年高考语文一轮复习(新高考)
- 钣金设备操作培训
- 2024驾校经营权承包合同
- 福建省能化集团笔试题目
- 快递公司与驿站合作协议模板 3篇
- 水利工程招标文件样本
- 品质管控培训质量管理与质量控制课件
- 手糊补强工A卷考试 (1)附有答案
- 消防四个能力
- 机动车环检标准方法验证模板
评论
0/150
提交评论