版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,是非零向量.若,则()A. B. C. D.2.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.363.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.84.设复数满足,在复平面内对应的点的坐标为则()A. B.C. D.5.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.6.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;7.的展开式中的系数为()A.-30 B.-40 C.40 D.508.已知数列是公差为的等差数列,且成等比数列,则()A.4 B.3 C.2 D.19.若(是虚数单位),则的值为()A.3 B.5 C. D.10.在中,,则()A. B. C. D.11.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.412.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.14.对于任意的正数,不等式恒成立,则的最大值为_____.15.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.16.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.18.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.19.(12分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.20.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.21.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.22.(10分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.2、B【答案解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.3、A【答案解析】
由垂心的性质,得到,可转化,又即得解.【题目详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【答案点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.4、B【答案解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.【题目详解】在复平面内对应的点的坐标为,则,,∵,代入可得,解得.故选:B.【答案点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.5、B【答案解析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【题目详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【答案点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.6、A【答案解析】
要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【题目详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【答案点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.7、C【答案解析】
先写出的通项公式,再根据的产生过程,即可求得.【题目详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【答案点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.8、A【答案解析】
根据等差数列和等比数列公式直接计算得到答案.【题目详解】由成等比数列得,即,已知,解得.故选:.【答案点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.9、D【答案解析】
直接利用复数的模的求法的运算法则求解即可.【题目详解】(是虚数单位)可得解得本题正确选项:【答案点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.10、A【答案解析】
先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【题目详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【答案点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.11、B【答案解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。12、A【答案解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【题目详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.【答案点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.14、【答案解析】
根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【题目详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【答案点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.15、【答案解析】
直接计算,可得结果.【题目详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【答案点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.16、1【答案解析】
根据正态分布对称性,求得质量低于的袋数的估计值.【题目详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【答案点睛】本小题主要考查正态分布对称性的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【答案解析】
(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【题目详解】(1)由题,向量,,则.(2),.,,整理得,化简得,即,,,,即.【答案点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.18、(1)(2)最大值;最小值.【答案解析】
(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【题目详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【答案点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.19、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【答案解析】
(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【题目详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,,随机变量X的分布列如下:【答案点睛】本题考查数据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.20、(1)AB的中点的横坐标为;(2)证明见解析;(3)【答案解析】
设.(1)因为直线的倾斜角为,,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为.(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60335-2-15:2024 EXV EN Household and similar electrical appliances - Safety - Part 2-15: Particular requirements for appliances for heating liquids
- 淮阴师范学院《田径B(2)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《影视特效制作》2021-2022学年第一学期期末试卷
- 淮阴师范学院《小学语文文本解读》2022-2023学年第一学期期末试卷
- 淮阴师范学院《广播电视采访与写作》2022-2023学年第一学期期末试卷
- 淮阴工学院《配送中心规划与设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《安装工程技术与识图》2022-2023学年第一学期期末试卷
- 淮阴工学院《园艺产品与人体健康》2022-2023学年第一学期期末试卷
- DB6111∕T+217-2024+火龙果保鲜技术规程
- 水利工程中的水土保持与林业经济考核试卷
- 配电室运行维护投标方案(技术标)
- 初中化学试卷讲评课件
- 2024届东北师大附中重庆一中等六校化学高一第一学期期中检测试题含解析
- (完整版)医疗器械网络交易服务第三方平台质量管理文件
- 13G322-1~4《钢筋混凝土过梁(2013年合订本)》
- 关于幼儿园小班反邪教安全教案
- 某单位物业服务项目投标方案
- 35KV场内集电线路工程强条执行检查表
- 【多旋翼无人机的组装与调试5600字(论文)】
- 减速机知识及维修课件
- 内部项目跟投协议书(正)
评论
0/150
提交评论