2022-2023学年安徽省六安市叶集区九年级数学上册期末达标测试试题含解析_第1页
2022-2023学年安徽省六安市叶集区九年级数学上册期末达标测试试题含解析_第2页
2022-2023学年安徽省六安市叶集区九年级数学上册期末达标测试试题含解析_第3页
2022-2023学年安徽省六安市叶集区九年级数学上册期末达标测试试题含解析_第4页
2022-2023学年安徽省六安市叶集区九年级数学上册期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是()A. B. C. D.2.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是()A.B.C.,,三点在同一直线上D.3.已知是方程的一个解,则的值是()A.±1 B.0 C.1 D.-14.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣;⑤c-3a>0其中正确结论有()A.1个 B.3个 C.4个 D.5个6.已知,在中,,则边的长度为()A. B. C. D.7.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.248.如图,在半径为的中,弦长,则点到的距离为()A. B. C. D.9.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1 B.1:2 C.4:1 D.1:410.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为()(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m二、填空题(每小题3分,共24分)11.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.12.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.13.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.15.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.16.二次函数图象的对称轴是______________.17.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.18.已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m_____n.(填“>”、“<”或“=”)三、解答题(共66分)19.(10分)计算:|1﹣|+.20.(6分)如图,已知是一次函数的图象与反比例函数的图象的两个交点(1)求此反比例函数和一次函数的解析式.(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.21.(6分)如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.(1)求抛物线的解析式;(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.22.(8分)学校准备建一个矩形花圃,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为18米,设花圃垂直于墙的一边长为x米,花圃的面积为y平方米.(1)求出y与x的函数关系式,并写出x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?23.(8分)如图,在8×8的正方形网格中,△AOB的顶点都在格点上.请在网格中画出△OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与△OAB的位似为2:1.24.(8分)先阅读,再填空解题:(1)方程:的根是:________,________,则________,________.(2)方程的根是:________,________,则________,________.(3)方程的根是:________,________,则________,________.(4)如果关于的一元二次方程(且、、为常数)的两根为,,根据以上(1)(2)(3)你能否猜出:,与系数、、有什么关系?请写出来你的猜想并说明理由.25.(10分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?26.(10分)金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为,测得楼AB的底部B处的俯角为.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数.参考数据:,,)

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据切线的性质和切线长定理得到PA=PB,∠APE=∠BPE,,易证△PAE≌△PBE,得到E为AB中点,根据垂径定理得;通过互余的角的运算可得.【详解】解:∵,是的两条切线,∴,∠APE=∠BPE,故A选项正确,在△PAE和△PBE中,,∴△PAE≌△PBE(SAS),∴AE=BE,即E为AB的中点,∴,即,故C选项正确,∴∵为切点,∴,则,∴∠PAE=∠AOP,又∵,∴∠PAE=∠ABP,∴,故D选项正确,故选B.【点睛】本题主要考查了切线长定理、全等三角形的判定和性质、垂径定理的推论及互余的角的运算,熟练掌握这些知识点的运用是解题的关键.2、B【分析】直接利用位似图形的性质进而得出答案.【详解】∵以点O为位似中心,把△ABC放大为原图形的2倍得到△ABC,

∴△ABC∽△A′B′C′,A,O,A′三点在同一直线上,AC∥A′C′,

无法得到CO:CA′=1:2,

故选:B.【点睛】此题考查了位似变换,正确掌握位似图形的性质是解题关键.3、A【分析】利用一元二次方程解得定义,将代入得到,然后解关于的方程.【详解】解:将代入得到,解得故选A【点睛】本题考查了一元二次方程的解.4、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【分析】根据二次函数的图项与系数的关系即可求出答案.【详解】①∵图像开口向下,,∵与y轴的交点B在(0,1)与(0,3)之间,,∵对称轴为x=1,,∴b=-4a,∴b>0,∴abc<0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图像与x轴的另一个交点为(5,0),∴根据图像可以看出,当x=3时,函数值y=9a+3b+c>0,故②正确;③∵点,∴点M到对称轴的距离为,点N到对称轴的距离为,∴点M到对称轴的距离大于点N到对称轴的距离,∴,故③正确;④根据图像与x轴的交点坐标可以设函数的关系式为:y=a(x-5)(x+1),把x=0代入得y=-5a,∵图像与y轴的交点B在(0,1)与(0,3)之间,,解不等式组得,故④正确;⑤∵对称轴为x=1,∴b=-4a,当x=1时,y=a+b+c=a-4a+c=c-3a>0,故⑤正确;综上分析可知,正确的结论有5个,故D选项正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax1+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方.6、B【分析】如图,根据余弦的定义可求出AB的长,根据勾股定理即可求出BC的长.【详解】如图,∵∠C=90°,AC=9,cosA=,∴cosA==,即,∴AB=15,∴BC===12,【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.7、B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.8、B【分析】过点O作OC⊥AB于点C,由在半径为50cm的⊙O中,弦AB的长为50cm,可得△OAB是等边三角形,继而求得∠AOB的度数,然后由三角函数的性质,求得点O到AB的距离.【详解】解:过点O作OC⊥AB于点C,如图所示:

∵OA=OB=AB=50cm,

∴△OAB是等边三角形,

∴∠OAB=60°,∵OC⊥AB故选:B【点睛】此题考查了垂径定理、等边三角形的判定与性质、三角函数,熟练掌握垂径定理,证明△OAB是等边三角形是解决问题的关键.9、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.10、B【分析】先根据等腰三角形的性质得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入计算可得.【详解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故选:B.【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt△ABD,再利用三角函数求解.二、填空题(每小题3分,共24分)11、.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.12、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.13、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.14、(,2).【解析】由题意得:,即点P的坐标.15、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、直线【分析】根据二次函数的顶点式直接得出对称轴.【详解】二次函数图象的对称轴是x=1.故答案为:直线x=1【点睛】本题考查的是根据二次函数的顶点式求对称轴.17、【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=.

故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18、<【解析】根据二次函数的性质得到抛物线y=x2+2x-t的开口向上,有最小值为-t-1,对称轴为直线x=-1,则在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大,进而解答即可.【详解】∵y=x2+2x-t=(x+1)2-t-1,∴a=1>0,有最小值为-t-1,∴抛物线开口向上,∵抛物线y=x2+2x-t对称轴为直线x=-1,∵-2<0<2,∴m<n.故答案为:<三、解答题(共66分)19、1.【分析】根据根式、绝对值、指数的运算,以及特殊角的三角函数值,即可求得.【详解】|1﹣|+(﹣cos60°)2﹣﹣(2+3)0=﹣1+4﹣+3﹣1=1【点睛】本题考查根式、绝对值、指数的运算,以及特殊角的三角函数值,属基础题.20、(1),y=-x-1;(1)x>1或-4<x<0【分析】(1)先把A(-4,1)代入求出m=-8,从而确定反比例函数的解析式为;再把B(n,-4)代入求出n=1,确定B点坐标为(1,-4),然后利用待定系数法确定一次函数的解析式;(1)观察图象得到当-4<x<0或x>1

时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.【详解】(1)把A(-4,1)代入得m=-4×1=-8,∴反比例函数的解析式为;把B(n,-4)代入得-4n=-8,解得n=1,∴B点坐标为(1,-4),把A(-4,1)、B(1,-4)分别代入y=kx+b得,解方程组得,∴一次函数的解析式为y=-x-1;(1)观察函数图象可得反比例函数的值大于一次函数的值的x取值范围是:-4<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标同时满足两个函数的解析式;求反比例函数图象与一次函数图象的交点坐标就是把两个图象的解析式组成方程组,方程组的解就是交点的坐标.也考查了待定系数法以及观察函数图象的能力.21、(1);(2);(3)点的坐标为或【分析】(1)设出抛物线的顶点式,将顶点C的坐标和原点坐标代入即可;(2)先求出点A的坐标,再利用待定系数法求出AC的解析式,过点作轴交于点,设,则,然后利用“铅垂高,水平宽”即可求出面积与m的关系式,利用二次函数求最值,即可求出此时点D的坐标;(3)先证出为等边三角形,然后根据P点的位置和菱形的顶点顺序分类讨论:①当点与点重合时,易证:四边形是菱形,即可求出此时点P的坐标;②作点关于轴的对称点,当点与点重合时,易证:四边形是菱形,先求出,再根据锐角三角函数即可求出BP,从而求出此时点P的坐标.【详解】(1)解:设抛物线解析式为,∵顶点∴又∵图象过原点∴解出:∴即(2)令,即,解出:或∴设直线AC的解析式为y=kx+b将点,的坐标代入,可得解得:∴过点作轴交于点,设,则∴∴∴当时,有最大值当时,∴(3)∵,,∴∴∴为等边三角形①当点与点重合时,∴四边形是菱形∴②作点关于轴的对称点,当点与点重合时,∴四边形是菱形∴点是的角平分线与对称轴的交点,∴,∵,.在Rt△OBP中,∴综上所述,点的坐标为或【点睛】此题考查的是二次函数与图形的综合大题,掌握用待定系数法求二次函数的解析式、利用“铅垂高,水平宽”求面积的最值、菱形的判定定理和分类讨论是数学思想是解决此题的关键.22、(1)y=﹣2x2+30x;6≤x<11;(2)当x=7.1时,y的最大值是112.1.【分析】(1)利用矩形的面积公式,列出面积y关于x的函数解析式,即可求解;(2)根据自变量的取值范围和函数的对称性确定函数的最大值即可.【详解】解:(1)由题意可得,y=x(30﹣2x)=﹣2x2+30x,即y与x的函数关系式是y=﹣2x2+30x;∵墙的长度为18,∴0<30﹣2x≤18,解得,6≤x<11,即x的取值范围是6≤x<11;(2)由(1)知,y=﹣2x2+30x=﹣2(x﹣)2+,而6≤x<11,∴当x=7.1时,y取得最大值,此时y=112.1,即当x=7.1时,y的最大值是112.1.【点睛】本题主要考查二次函数的实际应用,关键是根据题意得到函数关系式,然后利用二次函数的性质进行求解即可.23、答案见解析.【分析】延长AO,BO,根据相似比,在延长线上分别截取AO,BO的2倍,确定所作的位似图形的关键点A',B',再顺次连接所作各点,即可得到放大2倍的位似图形△A'B'C'.【详解】解:如图【点睛】本题考查作图-位似变换,数形结合思想解题是关键.24、(1)-2,1,-1,2;(2)3,,,;(3)5,-1,4,-5;(4),,理由见解析【分析】(1)利用十字相乘法求出方程的解,即可得到答案;(2)利用十字相乘法求出方程的解,即可得到答案;(3)利用十字相乘法求出方程的解,即可得到答案;(4)利用公式法求出方程的解,即可得到答案.【详解】(1)∵,∴(x+2)(x-1)=0,∴,,∴,;故答案为:-2,1,-1,2;(2)∵,∴(x-3)(2x-1)=0,∴,,∴,,故答案为:3,,,;(3)∵,∴(x-5)(x+1)=0,∴,,∴,,故答案为:5,-1,4,-5;(4),与系数、、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论